期刊文献+

基于滑动模型的车辆里程仪标度因数标定方法 被引量:3

Calibration of odometer's scale factor based on sliding model
下载PDF
导出
摘要 为提高车载导航系统中里程仪标度因数在非匀速条件下的标定精度,建立了车辆运动的动力学简化模型,分析了车辆加、减速时轮胎相对路面滑动对里程仪测量精度的影响,推导了基于路面附着系数的相对滑动模型,利用导航初始阶段惯导精度高的特点,将惯导解算位置作为基准,采用卡尔曼滤波器对里程仪标度因数进行估计。验证实验表明,经过改进的算法可以在车辆非匀速条件下对里程仪标度因数进行精确估计。相比未经滑动修正的估计值,里程仪测量精度由0.16%提高到0.02%。 For achieving the accurate calibration of an odometer's scale factor at uneven speed in vehicle navigation system,the simplified dynamic model of vehicle motion is built,the influence of relative sliding between tire and surface on the odometer's measurement precision is analyzed when acceleration and deceleration,and the relative sliding model based on road friction coefficient is derived.The outputs of strapdown inerial navigation system(SINS) have high precision at the initial phase of navigation,and the odometer's scale factor is calibrated using Kalman filter based on position output.The test result shows that high calibration precision can be achieved with vehicle variable velocity.The calibrated odometer is used for dead reckoning,the longitudinal measurement accuracy is improved from 0.16% to 0.02% compared with the uncorrected estimate.
作者 朱立彬 王玮
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第4期778-781,共4页 Systems Engineering and Electronics
关键词 标度因数 滑动模型 路面附着系数 里程仪 捷联惯导系统 scale factor sliding model road friction coefficient odometer strapdown inertial navigation system(SINS)
  • 相关文献

参考文献4

二级参考文献17

共引文献36

同被引文献26

  • 1张运楚,梁自泽,谭民.架空电力线路巡线机器人的研究综述[J].机器人,2004,26(5):467-473. 被引量:123
  • 2丁文娟,李岁劳,熊伟.捷联惯导系统/里程计自主式车载组合导航系统研究[J].计测技术,2006,26(1):14-16. 被引量:13
  • 3吴功平,肖晓晖,肖华,戴锦春,鲍务均,胡杰.架空高压输电线路巡线机器人样机研制[J].电力系统自动化,2006,30(13):90-93. 被引量:118
  • 4朱兴龙,王洪光,房立金,赵明扬,周骥平.输电线巡检机器人行走动力特性与位姿分析[J].机械工程学报,2006,42(12):143-150. 被引量:17
  • 5Skog I, Handel P. In-car positioning and navigation technologies-a survey [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10( 1 ) :4 - 21. 被引量:1
  • 6Georgy J, Karamat T, Iabal U, et al. Enhanced MEMS-IMU/ odometer/GPS integration using mixture particle filter [ J]. GPS Solutions, 2011, 15(3) :239 -252. 被引量:1
  • 7Georgy J, Noureldin A, Korenberg M J, et al. Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (4) :856 - 872. 被引量:1
  • 8Duong T T, Huang Y W, Chiang K W. Improving the accuracy ofmems IMU/GPS POS systems for land-based mobile mapping system by using tightly enupled integration and auxiliary odometer [ C] //31st Asian Conference on Remote Sensing. Tokyo, Japan: Asian Association on Remote Sensing, 2010:515 -520. 被引量:1
  • 9Wang W, Wang D. Land vehicle navigation using odometry/INS! vision integrated system [ C ] //2008 IEEE International Conference on Cybernetics and Intelligent Systems. Chengdu: IEEE Computer Society, 2008:754 - 759. 被引量:1
  • 10Kim S B, Bazin J C, Lee H K, et al. Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data[ J]. IET Radar, Sonar & Navigation, 2011, 5 ( 8 ) :814 - 823. 被引量:1

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部