期刊文献+

基于改进C-V模型的肿瘤CT图像分割

Image Segmentation in Tumor CT Based on the Improved C-V Model
原文传递
导出
摘要 针对传统C-V模型演化速度慢和不能很好分割灰度不均匀图像的缺点,从两个方面进行了改进。首先采用一个新颖的基于局部梯度的模型,使C-V模型初始轮廓曲线快速移到目标边界附近,大大缩短了演化时间;其次,结合GVF模型从两个方向指向目标边界的特点,为C-V模型的速度方程添加一个自适应速度调节项,使模型收敛于真实边界。通过肝脏肿瘤CT图像的分割,验证该方法是有效的。 Aiming at the shortcomings of slow convergence and inaccuracy segmentation in non-homogeneous images,improvements were made on the traditional C-V model in two aspects.Firstly,using a novel model based on local gradient,the initial contour of the C-V model was quickly moved near the target border,greatly reducing the evolution time.Secondly,combining the characteristics of GVF model from two directions to the target border,an adaptive velocity reconciling item was added for velocity equation of the C-V model to make the model converge to the true border.The segmentation experiments for liver tumors in CT showed that the proposed method could be effective.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第2期341-346,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(50775060) 山西省教育厅项目资助(20103098)
关键词 C-V模型 水平集 图像分割 CT图像 C-V model Level set method Image segmentation CT images
  • 相关文献

参考文献17

  • 1KASS M,WITKIN A,TERZOPOULOS D.Snakes:activecontour models[J].Int J Comput Vis,1988,1(4):321-331. 被引量:1
  • 2XU C Y,PRINCE J L.Snakes,shapes,and gradient vectorflow[J].IEEE Trans on Image Processing,1998,7(3):359-369. 被引量:1
  • 3CASELLES V,KIMMEL R,SAPIRO G.Geodesic activecontours[J].Int J Comput Vis,1997,22(1):61-79. 被引量:1
  • 4MALLADI R,SETHIAN J A,VEMURI B C.Shape model-ing with front propagation:a level set approach[J].IEEETrans Pattern Anal Mach Intell,1995,17(2):158-175. 被引量:1
  • 5COHEN L D.On active contour models and balloons[J].Cv-gip:Image Underst,1991,53(2):211-218. 被引量:1
  • 6SETHIAN J A.Level set methods and fast marching meth-ods:evolving interfaces in computational geometry,fluid me-chanics,computer vision,and materials science[M].2nd ed.Cambridge:Cambridge University Press,1999. 被引量:1
  • 7CHAN T F,VESE L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277. 被引量:1
  • 8钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 9张建伟,葛琦.基于局部统计信息的快速CV模型MR图像分割[J].中国图象图形学报,2010,15(1):69-74. 被引量:11
  • 10LI C M,XU C Y,GUI C F,et al.Level set evolution with-out re-initialization:a new variational formulation[C]//Pro-ceedings of the IEEE Conference on Computer Vision and Pat-tern Recognition,San Diego,2005:430-436. 被引量:1

二级参考文献52

  • 1侯志强,韩崇昭.基于力场分析的主动轮廓模型[J].计算机学报,2004,27(6):743-749. 被引量:20
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3闵莉,李小毛,唐延东.一种改进的无需水平集重新初始化的C-V主动轮廓模型(英文)[J].光电工程,2006,33(9):52-58. 被引量:12
  • 4李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001.. 被引量:1
  • 5Jacob M, Blu T, Unser M. Efficient Energies and Algorithms for Parametric Snakes. IEEE Trans on Image Processing, 2004, 13 (9) : 1231 -1244 被引量:1
  • 6Gonzalez R C, Woods R E. Digital Image Processing. New York, USA: John Wiley & Sons, 1992 被引量:1
  • 7Kass M, Witkin A, Terzopouls D. Snake: Active Contour Models. International Journal of Computer Vision, 1987, 1 (4) : 321 -331 被引量:1
  • 8Xiang Yang, Chung A C S, Ye Jian. An Active Contour Model for Image Segmentation Based on Elastic Interaction. Journal of Computational Physics, 2006, 219( 1 ) : 455 -476 被引量:1
  • 9Xu Chenyang, Jr Yezzi A,Prince J L. On the Relationship between Parametric and Geometric Active Contours// Proc of the 34th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2000, Ⅰ: 483 -489 被引量:1
  • 10Paragios N, Mellina G O, Ramesh V. Gradient Vector Flow Fast Geometric Active Contours. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (3) : 402 -407 被引量:1

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部