期刊文献+

基于可分度和支持度的模糊密度赋值融合识别算法 被引量:5

Fusion Recognition Algorithm Based on Fuzzy Density Determination with Classification Capability and Supportability
原文传递
导出
摘要 模糊积分理论可有效处理分类决策不确定性问题.当前模糊密度的确定方法未考虑各个分类器识别结果的可区分程度及各分类器对识别结果的支持程度,会丢失融合识别的相关信息.文中提出基于可分度和支持度的自适应模糊密度赋值融合识别算法.该算法根据各分类器对待识别样本的识别结果的可区分程度和支持程度对分类器的融合模糊密度进行自适应赋值,从而有效实现多分类器融合识别.将该算法应用于自然交互环境下的人脸表情识别和Cohn-Kanade表情识别.实验结果表明,该算法能有效提高总体表情识别率. Fuzzy integral theory can be effectively used to deal with the uncertainties of the classification decisions. However, the classification capability of each classifier for recognition results and the supportability of each classifier for the object recognition are not taken into account in the current methods of fuzzy density determination, which results in the loss of the important information for fusion recognition. To overcome this disadvantage, a fusion recognition algorithm based on fuzzy density determination with classification capability and supportability for each classifier is presented. In this algorithm, the fuzzy densities for the classifier fusion are adaptively determined by classification capability of each classifier for recognition results and supportability of each classifier for the object recognition. Thus, the multi- classifiers fusion recognition can be effectively realized. The proposed algorithm is used to recognize facial expression in natural interaction situation and Cohn-Kanade facial expression database. The experimental results show that the proposed algorithm effectively raises the accuracy of expression recognition.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期346-351,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61003183 61170126)
关键词 融合识别 模糊密度 可分度 支持度 人脸表情识别 Fusion Recognition, Fuzzy Density, Classification Capability, Supportability, FacialExpression Recognition
  • 相关文献

参考文献11

二级参考文献31

  • 1邢清华,刘付显.空袭目标类型的模糊识别与聚类研究[J].系统工程理论与实践,2004,24(6):139-143. 被引量:10
  • 2付耀文,黎湘,庄钊文.一种自适应模糊密度赋值的决策层融合目标识别算法[J].电子学报,2004,32(9):1433-1435. 被引量:15
  • 3章新华,林良骥,王骥程.目标识别中信息融合的准则和方法[J].软件学报,1997,8(4):303-307. 被引量:4
  • 4胡钟山.字符识别技术的研究与应用[博士学位论文].南京:南京理工大学,1999.. 被引量:1
  • 5邢清华.多传感器信息智能融合方法研究[D].西安:空军工程大学,2007. 被引量:5
  • 6Weber S.S decomposable measures and integrals for Archimedean t-conorms[J].Math Analysis and Applications,1984,101(1):114-138. 被引量:1
  • 7Liu Chengjun, Wechsler H. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans on Image Processing, 2002, 11 (4) : 467 - 476. 被引量:1
  • 8Lades M, Vorbruggen J C, Buhmann J, et al. Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans on Computers, 1993, 42(3) : 300 -311. 被引量:1
  • 9Wiskott L, Fellous J M, Kuiger N, et al. Face Recognition by Elastic Bunch Graph Matching. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):775-779. 被引量:1
  • 10Zhu Zhenfeng, Tang Ming, Lu Hanqing. A New Robust Circular Gabor Based Object Matching by Using Weighted Hausdorff Distance. Pattern Recognition Letters, 2004, 25 (4) : 515 - 523. 被引量:1

共引文献59

同被引文献64

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部