期刊文献+

增强组合特征判别性的典型相关分析 被引量:8

Combined-Feature-Discriminability Enhanced Canonical Correlation Analysis
原文传递
导出
摘要 典型相关分析(CCA)在执行分类任务时主要存在如下不足:1)尽管分类时的输入是组合特征,但CCA仅优化组合特征的各组成部分,并未直接优化组合特征本身;2)尽管面对的是分类任务,然而CCA根本无法利用样本的类信息.为弥补CCA的上述不足,文中提出一种监督型降维方法——增强组合特征判别性的典型相关分析(CECCA).CECCA在CCA基础上,通过结合组合特征的判别分析,实现对组合特征相关性与判别性的联合优化,使所抽取特征更适合分类.在人工数据集、多特征手写体数据集和人脸数据集上的实验结果验证该方法的有效性. Canonical Correlation Analysis (CCA) has following two deficiencies m pertormlng classmcanon task: CCA can not directly optimize them but their components, though combined features are the input of the classifier; CCA can not utilize any class information at all, though facing classification task. To overcome these deficiencies, a supervised dimension reduction method named combined-feature- discriminability enhanced canonical correlation analysis (CECCA) is proposed. CECCA is developed through incorporating discriminant analysis of combined features into CCA. Consequently, it optimizes the combined feature correlation and discriminability simultaneously and thus makes the extracted features more suitable for classification. The experimental results on artificial dataset, multiple feature database and facial databases show that the proposed method is effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期285-291,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.61170151) 江苏省自然科学基金(No.BK2011728)资助项目
关键词 典型相关分析(CCA) 分类 降维 组合特征 信息融合 Canonical Correlation Analysis ( CCA), Classification, Dimension Reduction, CombinedFeatures, Information Fusion
  • 相关文献

参考文献25

  • 1Hotelling H. Relations between Two Sets of Variates[J].Biometrika,1936,(3/4):321-377. 被引量:1
  • 2Anderson T W. An Introduction to Multivariate Statistical Analysis[M].Hoboken,USA:Wiley,2003. 被引量:1
  • 3Johnson R A,Wichern D W. Applied Multivariate Statistical Analysis[M].Cambridge,USA:Prentice Hall,2007. 被引量:1
  • 4Liu Yanyan,Liu Xiuping,Su Zhixun. A New Fuzzy Approach for Handling Class Labels in Canonical Correlation Analysis[J].Neurocomputing,2008,(7/8/9):1735-1740. 被引量:1
  • 5Ogura T. A Variable Selection Method in Principal Canonical Correlation Analysis[J].Computational Statistics and Data Analysis,2010,(03):1117-1123. 被引量:1
  • 6Sun Quansen,Zeng Shenggen,Liu Yah. A New Method of Feature Fusion and Its Application in Image Recognition[J].Pattern Recognition,2005,(12):2437-2448.doi:10.1016/j.patcog.2004.12.013. 被引量:1
  • 7Hardoon D R,Szedmak S,Taylor J S. Canonical Correlation Analysis:An Overview with Application to Learning Method[J].Neural Computation,2004,(12):2639-2664. 被引量:1
  • 8Correa N M,Eichele T,Adali T. Multi-Set Canonical Correlation Analysis for the Fusion of Concurrent Single Trial ERP and Functional MRI[J].Neuroimage,2010,(04):1438-1445. 被引量:1
  • 9Paskaleva B,Hayat M M,Wang Zhipeng. Canonical Correlation Feature Selection for Sensors with Overlapping Bands:Theory and Application[J].IEEE Transactions on Geoscience and Remote Sensing,2008,(10):3346-3358. 被引量:1
  • 10Fu Yun,Huang T S. Image Classification Using Correlation Tensor Analysis[J].IEEE Transactions on Image Processing,2008,(02):226-234. 被引量:1

同被引文献29

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2Paramveer S Dhillon,Jordan Rodu,Dean P Foster,et al.Two step CCA:A new spectral method for estimating vector models of words[C].Proc of the 29th Int Conf on Machine Learning.Edinburgh,2012:1043-1048. 被引量:1
  • 3Melzer T,Reiter M,Bischof H.Appearance models based on kernel canonical correlation analysis[J].Pattern Recognition,2003,36(9):1961-1971. 被引量:1
  • 4Sun T K,Chen S C.Locality preserving CCA with applications to data visualization and pose estimation[J].Image and Vision Computing,2007,25(5):531-543. 被引量:1
  • 5Sun T K,Chen S C,Yang J Y,et al.A novel method of combined feature extraction for recognition[C].Proc of the 8th IEEE Int Conf on Data Mining.Pisa,2008:1043-1048. 被引量:1
  • 6Peng Yan,Zhang Daoqiang,Zhang Jianchun.A new canonical correlation analysis algorithm with local discrimination[J].Neural Processing Letters,2009,31(1):1-15. 被引量:1
  • 7Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2):210-227. 被引量:1
  • 8Qiao L S,Chen S C,Tan X Y.Sparsity preserving projections with applications to face recognition[J].Pattern Recognition,2010,43(1):331-334. 被引量:1
  • 9Miao Zheng,Jiajun Bu,Chun Chen,et al.Graph regularized sparse coding for image representation[J].IEEE Trans on Image Processing,2011,20(5):1327-1336. 被引量:1
  • 10Sun L,Ji S W,Ye J.Canonical correlation analysis for multilabel classification:A least squares formulation,extensions and analysis[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2011,33(1):194-200. 被引量:1

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部