摘要
New materials have been developed for PDP for fast addressing and power reduction.They show the transition in R&D from materials invented accidentally to materials-by-design.Cathode-luminescence on MgO crystals is used to compare thermally assisted recombination and tunneling.Bethe Salpeter equations(BSE) are used to predict the exciton properties of mixed oxides like MgCaO.Using new materials an ultra-thin(300 μm) and flexible Shadow-Mask PDP has been realized.The same device is also operated in a reverse mode,where high energy radiation is imaged,using the Gaseous Electron Multiplier(GEM) effect in the Townsend
New materials have been developed for PDP for fast addressing and power reduction.They show the transition in RD from materials invented accidentally to materials-by-design.Cathode-luminescence on MgO crystals is used to compare thermally assisted recombination and tunneling.Bethe Salpeter equations(BSE) are used to predict the exciton properties of mixed oxides like MgCaO.Using new materials an ultra-thin(300 μm) and flexible Shadow-Mask PDP has been realized.The same device is also operated in a reverse mode,where high energy radiation is imaged,using the Gaseous Electron Multiplier(GEM) effect in the Townsend mode
出处
《真空电子技术》
2012年第1期1-9,共9页
Vacuum Electronics
基金
supported by the National Natural Science Foundation of China(60871015)
the National High Technology Research(863 Program of China(2008AA03A308))
Innovation Project of Jiangsu Graduate Education(CXZZ11_0143)