摘要
首次用加权余量法和Mises屈服准则对受线性和均布荷载共同作用下的简支圆板进行极限载荷分析,选择了3个不同的试函数,求得了极限载荷的解析解.该解为圆板半径和极限弯矩的函数,且随着圆板半径的增大而减小.结果表明,Tresca预测极限载荷的下限,TSS屈服准则预测极限载荷的上限,加权余量法预测的极限载荷均居于二者中间.
The limit loads of simply supported circular plate under linearly and uniformly distributed load were analyzed with weighted residual method and Mises yield criterion. Three different trial functions were selected to obtain the analytical solutions of limit loads. The obtained solution is the function of circular plate radius and ultimate bending moment, and it decreases with increasing circular plate radius. The results showed that Tresca criterion forecasts the lower limit of limit load, while TSS criterion forecasts the upper limit of limit load. The limit load forecasted by the weighted residual method just lies between the TSS and Tresca solutions.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第4期524-527,共4页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(51074052)
中央高校基本科研业务费专项资金资助项目(N110607002)
关键词
加权余量法
线性和均布荷载
简支圆板
极限载荷
解析解
weighted residual method
linearly and uniformly distributed load
simply supported circular plate
limit load
analytical solution