期刊文献+

一种k-means聚类的改进算法与实现 被引量:1

An Improved K-Means Clustering Algorithm and Its Implementation
下载PDF
导出
摘要 传统的k-means算法作为一种动态聚类法,是聚类方法中常用的一种划分方法,其应用领域非常广泛。但该方法存在初始k值不确定、时间复杂度大等缺点。针对这些缺点,改进了聚类初值的随机性问题,简化了算法,降低了时间复杂度,提高了k-means算法的性能,并给出了具体的代码实现。 As a dynamic clustering method,the traditional algorithms of k-means is a common way of division in clustering with its wide applications in a range of fields.However,this means is flawed for a series of shortcomings with it including the uncertain initial value in k and the high degree of time complexity.In order to overcome these problems,this paper contributes to make improvements in the resolution of the random problem of initial value for clustering and the simplification for the algorithm as well as the reduction in the degree of time complexity.Furthermore,the paper also enhances the performance of the algorithms of k-means and provides a concrete code for implementation.
出处 《软件导刊》 2012年第3期66-70,共5页 Software Guide
基金 广东省自然科学基金项目(9151170003000017)
关键词 动态聚类 K-MEANS算法 初值 Dynamic Clustering K-Means Algorithm Initial Value
  • 相关文献

参考文献9

二级参考文献22

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2刘远超,王晓龙,刘秉权.一种改进的k-means文档聚类初值选择算法[J].高技术通讯,2006,16(1):11-15. 被引量:23
  • 3刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 4李业丽,秦臻.一种改进的k-means算法[J].北京印刷学院学报,2007,15(2):63-65. 被引量:9
  • 5Hearst M A. Texttiling: Segmenting Text into Multi - paragraph Subtopic Passages [ J ]. Computational Linguistics, 1997,23 ( 1 ) : 33 -64. 被引量:1
  • 61,Srikant R, Agrawal R. Mining quantitative association rules in large relational table. In: Proceedings of the ACMSIGMOD Conference on Management of Data, Montreal, Canada, 1996. 1-12 被引量:1
  • 72,Fukuda T, Morimoto Y, Morishita S et al. Mining optimized association rules for numeric attributes. In: Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Montreal, Canada, 1996. 182-191 被引量:1
  • 83,Fukuda T, Morimoto Y, Morishita S et al. Data mining using two-dimensional optimized association rules: Scheme, algorithms and visualization. In: Proceedings of the ACMSIGMOD International Conference on Management of Data, Montreal, Canada, 1996. 13-24 被引量:1
  • 9Kaufan L,Rousseeuw Pj.Finding Groups in Data:an Introduction to Cluster Analysis[M].New York:John Wiley&Sons,1990. 被引量:1
  • 10Chen M S,ICDCD,1998年,385页 被引量:1

共引文献198

同被引文献6

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部