期刊文献+

一种MIMO-OFDM信道混合估计方法 被引量:1

A mixed estimation method for MIMO-OFDM channels
下载PDF
导出
摘要 传统的信道估计方法往往假设多径分量数已知且为常数,粒子滤波算法可估计服从高斯分布的时变信道。实际无线环境中,多径分量数目与幅度皆为时变,则粒子滤波估计方法性能恶化。本文提出基于二进制粒子群算法和卡尔曼滤波的MIMO-OFDM信道混合估计方法。采用随机集建模MIMO信道,并分析得到其多径转移概率模型;基于此模型将信道分解为离散部分和连续部分,推导得到此两部分与整体信道关系;采用二进制粒子群算法拟合信道离散部分,利用卡尔曼滤波估计信道幅度,将利用信道估计计算得到的观测值与真实观测值的近似程度作为适应度函数。仿真结果表明:本文所提出的信道估计方法性能优于基本粒子滤波的信道估计方法。 The typical estimation methods for MIMO-OFDM channel generally assume that the number of multi-path components is known and constant, and particle filtering can estimate the Gaussian distribution channel. However, in the fact that the number and the amplitude of channel taps are unknown in practical wireless situation, the performance of particle filtering scheme is impaired. In this paper, a channel estimation scheme based on binary PSO and Kalman filtering (PSO-KF) is proposed. Using RST theory a model of MIMO is established and the channel-taps' varying model is given. According to the model the whole channel is separated into discrete part and continuous part, and the relationship with them is derived. The discrete part could be obtained using binary PSO algorithm, and the channel amplitude value is acquired using Kalman filtering. The likelihood distance between the real observation and the estimated observation based on the channel estimation is chosen as the fitness function. Simulation results show the performance of PSO-KF algorithm is better than the particle filtering scheme.
出处 《电路与系统学报》 CSCD 北大核心 2012年第2期129-134,共6页 Journal of Circuits and Systems
关键词 多输入多输出 信道估计 导频辅助 粒子滤波 二进制粒子群 MIMO: channel estimation pilot assist particle filtering: binary PSO
  • 相关文献

参考文献14

  • 1赵知劲,汪百川,尚俊娜,徐春云.基于随机集模型的MIMO-OFDM信道估计算法[J].电子与信息学报,2011,33(2):489-493. 被引量:4
  • 2赵知劲,徐世宇,郑仕链,杨小牛.基于二进制粒子群算法的认知无线电决策引擎[J].物理学报,2009,58(7):5118-5125. 被引量:32
  • 3景源,殷福亮,曾硕.基于粒子滤波的MIMO-OFDM时变信道半盲估计[J].通信学报,2007,28(8):67-75. 被引量:12
  • 4汪百川..随机集理论在通信中的应用研究[D].杭州电子科技大学,2010:
  • 5KIM K J,YUE Y,ILTIS R A,et al.A QRD-M/Kalman filter-based detection and channel estimation algorithm for MIMO-OFDM systems[].IEEE Transactions on Wireless Communications.2005 被引量:1
  • 6HAYKIN S,HUBER K,CHEN Z.Bayesian sequential state estimation for MIMO wireless communications[].Proceedings of Tricomm.2004 被引量:1
  • 7Angelosante Ezio Biglieri,Marco Lops.Sequential Estimation of Multipath MIMO-OFDM Channels[].IEEE Transaction on SignalProcessing.2009 被引量:1
  • 8Zhiqiang Liu,Xiao li Ma,Giannakis G B.Space-time coding and Kalman filtering for time-selective fading channels[].IEEE Transactions on Communications.2002 被引量:1
  • 9Tsatsanis M K,Giannakis G B,Zhou G.Estimation and equalization of fading channels with random coefficients[].Signal Processing.1996 被引量:1
  • 10CHEN Runhua,LETAIEF K B.Channel Estimation for Space Time Coded OFDM Systems in Non-Sample-Spaced Multipath Channels[].WCNC.2002 被引量:1

二级参考文献42

  • 1赵知劲,郑仕链,邢国际,尚俊娜.应用遗传算法的认知无线电自适应参数调整[J].压电与声光,2007,29(1):90-92. 被引量:2
  • 2Rondeau T W,Rieser C J,Bostian C W 2004 SDR Forum Technical Conference C-3 被引量:1
  • 3Rondeau T W,Le B,Maldonado D,Scaperoth D,Bostian C W 2006 The first International Conference on Cognitive Radio Oriented Wireless Networks and Communication 被引量:1
  • 4Hauris J F 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation 427 被引量:1
  • 5Newman T R,Barker B A,Wyglinski A M,Agah A,Evans J B,Minden G J 2007 Wiley Wireless Communications and Mobile Computing 7 1129 被引量:1
  • 6Newman T R,Rajbanshi R,Wyglinski A M,Evans J B,Minden GJ 2007 The second International Conference on Cognitive Radio Oriented Wireless Networks and Communications 被引量:1
  • 7Zhao Z J,Zheng S L,Xu C Y 2007 WSEAS Transactions on Communications 6 773 被引量:1
  • 8Shi Y,Eberhart R 1998 IEEE International Conference on Evolutionary Computation 69 被引量:1
  • 9Kennedy J,Eberhart R 1995 IEEE International Conference on Neural Networks 4 1942 被引量:1
  • 10Kennedy J,Eberhart R 1997 The Conference on Systems,man,and Cybernetics 4104 被引量:1

共引文献45

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部