期刊文献+

关于(m,l)幂等矩阵的充要条件 被引量:2

Study on Necessary and Sufficient Conditions for Idempotent Matrix
下载PDF
导出
摘要 (m,l)幂等矩阵是m幂等矩阵和m幂幺矩阵概念的整合.研究利用与单位根相关矩阵1次幂的秩等式判定n阶方阵A是(m,l)幂等矩阵的另一充要条件,给出(m,l)幂等矩阵的相似标准形并利用其标准形得到它的迹的矩阵秩表示式. The concept of(m,l) idempotent matrices is an integration of m idempotent matrices and m unit-potent matrices.In this paper,a new necessary and sufficient condition to discriminate(m,l) idempotent matrices by using an equation associated with ranks of series matrices,which related to unit roots is given,the similar canonical form of(m,l) idempotent matrices is presented,and a formula for the trace of a matrix expressed in rank of matrices is obtained.
作者 宋小力
出处 《曲阜师范大学学报(自然科学版)》 CAS 2012年第2期37-40,共4页 Journal of Qufu Normal University(Natural Science)
关键词 (m l)幂等矩阵 幂幺矩阵 解空间 矩阵秩 idempotent matrix unit-potent matrix solution space rank of matrix
  • 相关文献

参考文献6

二级参考文献38

共引文献25

同被引文献23

  • 1杨忠鹏,林志兴.矩阵方幂的秩的一个恒等式及应用[J].北华大学学报(自然科学版),2007,8(4):294-298. 被引量:15
  • 2Baksalary O M, Trenkler G. On k- potent matrices[ J]. Electronic Journal of Linear Algebra, 2013, 26:446 -470. 被引量:1
  • 3McCloskey J P. Characterizations of r - potent matrices [ J 1. Mathematical Proceedings of the Cambridge Philosophical Society, 1984, 96:213-222. 被引量:1
  • 4Chen Meixiang, Yang Zhongpeng, Feng Xiaoxia. Invariance of rank and nullity for the linear combination of m ( ≥3) -scalar - idempotent matrices[J]. International Journal of Applied Mathematics and Statistics, 2011, 21 (11 ) : 141 -147. 被引量:1
  • 5Ye Suhua, Chen Yizhi, Luo Hui. On generalized m - power matrices and tansformations [ J ]. International Journal of Mathemat- ical Combinatorics, 2012(2): 71 -75. 被引量:1
  • 6Styan G P H. Notes on the distribution of quadratic forms in singular normal variates [ J ]. Biometrika, 1970, 57:567 -572. 被引量:1
  • 7Baksalary J K, Backsalary 0 M, Styan G P H. Idempotency of linear combinations of an idempotent matrix and tripotent matrix [J]. Linear Algebra and its Applications, 2002, 304:21-24. 被引量:1
  • 8Ozdemir H, Sarduvan M, Ozban A Y , et al. On idempotency and tripotentcy of linear combinations of two commuting tripotent matrix[ J]. Applied Mathematics and Computation, 2009, 207(1) : 197 -201. 被引量:1
  • 9Chen Meixiang, Lyu Hongbin, Feng Xiaoxia, et al. The essential (m, l) idempotent matrix and its minimal polynomial[ J]. International Journal of Applied Mathematics and Statistics, 2013, 41 (11 ) : 31 -41. 被引量:1
  • 10Bernstein D S. Matrix mathematics theory, facts, and formulas[ M]. 2th ed. Princeton: Princeton University Press, 2009. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部