期刊文献+

网络结点度相关性测度及其稳定性分析 被引量:1

NETWORK NODE DEGREE CORRELATION METRICS WITH STABILITY ANALYSIS
下载PDF
导出
摘要 判别网络同配/异配性的Newman相关系数r(g)和网络无标度程度的S(g)是研究网络结点度相关性的两个重要测度,其相关论文被科研人员广泛地引用,两个测度分别被应用到实际网络的同配/异配性和无标度程度的分析。为检验两个测度的稳定性,以BA模型为例,通过大量的计算机模拟和数值统计分析,结果显示:BA-3模型的r(g)与网络规模N的经验公式:r(g)∝-N-0.32,并指出r(g)和S(g)关于网络规模N、网络稠密度ρ都具有波动性。因此,用它们来分析不同规模或不同稠密度的有限的、增长的实际网络,其研究会产生一些误导性结果。 Newman correlation coefficient r(g) for network assortative or disassortative mixing and S(g) for network scale-free degree are two important metrics to analyze the network node degree correlations.Their related papers are popularly quoted by researchers.Moreover the two metrics are respectively applied to practical networks'assortative or disassortative mixing and scale-free degree analysis.To test the stability of the two metrics,by taking BA model as an example,a lot of computer simulations and statistical analysis are carried out.The results demonstrate BA-3 model's r(g) and network scale N's empirical formula r(g)∝-N-0.32.Moreover,both r(g) and S(g) are fluctuant about network scale N and network dense degree ρ.Hence if they are used to analysis limited and growing practical networks of different sizes or different dense degrees,their studies may generate some misleading conclusions.
作者 毛小燕
机构地区 宁波大学数学系
出处 《计算机应用与软件》 CSCD 北大核心 2012年第4期133-136,共4页 Computer Applications and Software
基金 浙江省教育厅科研项目(Y200907622) 宁波大学校内科研基金(XYL10014) 宁波大学研究生科研创新基金重点项目(G10JA007)
关键词 度相关性 测度 同配异配 无标度程度 稳定性 Degrees correlation Metric Assortative or disassortative mixing Scale-free degree Stability
  • 相关文献

参考文献10

  • 1Krapivsky P L,Redner S. Organization of growing random networks[J].Phys Bev E,2001.066123.doi:10.1103/PhysRevE.63.066123. 被引量:1
  • 2Barabási A L,Albert R,Jeong H. Mean-field theory for scale-free random networks[J].Journal of Physics A,1999.173-187. 被引量:1
  • 3Newman M E J. Asesotative mixing in networks[J].Physical Review Letters,2002.208701.doi:10.1103/PhysRevLett.89.208701. 被引量:1
  • 4Newman M E J. Mixing patterns in networks[J].Physical Review E,2003.026126.doi:10.1103/PhysRevE.67.026126. 被引量:1
  • 5Barabási A L,Albert R. Emergence of scaling im random networks[J].Science,1999.509-512. 被引量:1
  • 6Barabási A L,Albert R,Jeong H. Mean-field theory for scale-free random networks[J].Journal of Physics A,1999.173-187. 被引量:1
  • 7Li L,Alderson D,Doyle J C. Towards a Theory of Scale-Free Graphs:Definition,Properties,and Implications[J].Internet Mathematics,2005,(04):431-523. 被引量:1
  • 8史定华.度分布理论[M]北京:科学出版社,2011. 被引量:1
  • 9Shi Dinghua,Zhou Huijie,Liu Liming. A discussion about the Barabási-Albert' s 1999 paper[J].Physics Procedia,2010. 被引量:1
  • 10Móri T F. The maximum degree of the Barabási random tree[J].Combinatorics Probability and Computing,2005.339-348. 被引量:1

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部