期刊文献+

利用切比雪夫不等式的背景建模算法 被引量:3

BACKGROUND MODELING ALGORITHM THAT USES CHEBYSHEV INEQUALITY
下载PDF
导出
摘要 针对运动目标检测问题中的背景建模问题,提出一种结合切比雪夫不等式和核密度估计的背景建模方法。首先利用样本均值与样本方差及切比雪夫不等式,快速计算各像素点属于前景和背景的概率,判别出前景点、背景点及可疑点。对可疑点再利用核密度估计方法,估计其属于前景与背景的概率密度来进行背景前景判别,最后通过设定阈值完成实时背景建模。实验结果证明,利用切比雪夫不等式能快速区分有明显特征的前景点与背景点,采用背景更新算法能得到理想的背景图像,降低了背景图像提取的误差,显著地提高了背景建模的速度。 To solve the background modeling problem in the motion target detection problem,a background modeling method that integrates Chebyshev inequality and kernel density estimation is proposed.First of all,depending on sample mean,sample variance and Chebyshev inequality,the method quickly calculates each pixel's probability whether it belongs to the foreground or the background,in order to classify it as a foreground point,a background point or a suspicious point.If it is a suspicious point,the kernel density estimation method is used to estimate its probability density whether it belongs to the foreground or the background in order to carry out background/foreground discrimination.Finally,by setting the threshold value the method completes the real-time background modeling.Experimental results prove that Chebyshev inequalities can quickly distinguish foreground or background points that bear significant characteristics,while by using the background updating algorithm it can obtain the ideal background image,reducing background image extraction mistakes,meanwhile remarkably speeding up background modeling.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第4期53-56,共4页 Computer Applications and Software
基金 国家自然科学基金项目(60273078)
关键词 切比雪夫不等式 可疑点 核密度估计 背景建模 Chebyshev inequality Suspicious points Kernel density estimation Backgroun modeling
  • 相关文献

参考文献9

二级参考文献26

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2邓宇,李振波,李华.图切割支持的融合颜色和梯度特征的实时背景减除方法[J].计算机辅助设计与图形学学报,2006,18(11):1741-1747. 被引量:4
  • 3Han M, Sethi A, Hua W, et al. A detection-based multiple object tracking method [C] //Proceedings of International Conference on Image Processing, Singapore, 2004, 5: 3065- 3068. 被引量:1
  • 4Broggi A, Bertozzi M, Fascioli A, et al. Shape based pedestrian detection [C]// Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, 2000:215-220. 被引量:1
  • 5Kim J B, Kim H J. Efficient region based motion segmentation for a video monitoring system [J]. Pattern Recognition Letters, 2003, 24(1/3) : 113-128. 被引量:1
  • 6Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163. 被引量:1
  • 7Huang S S, Fu I. C, Hsiao P Y. Region-level motion-based background modeling and subtraction using MRFs [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1446-1456. 被引量:1
  • 8Stauffer C, Grimson W E I.. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 747-757. 被引量:1
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real time tracking with shadow detection [C]// Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems, Kingston, 2001:149-158. 被引量:1
  • 10Sheikh Y, Shah M. Bayesian modeling of dynamic scenes for object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792. 被引量:1

共引文献40

同被引文献30

  • 1张翠华,朱宏,马林.基于JIT采购的订单分配问题模型及仿真应用[J].东北大学学报(自然科学版),2006,27(11):1291-1294. 被引量:19
  • 2孔峰,刘鸿雁.基于理想点的改进AHP综合排序算法[J].系统工程,2007,25(4):98-103. 被引量:9
  • 3Piccardi M.Background subtraction techniques:a review[C]//Pro-ceedings of the IEEE International Conference on Systems,Man andCybernetics.The Hague,Netherlands:IEEE,2004,3099-3104. 被引量:1
  • 4Wren C,Azarbayejani A,Darrell T,et al.Pfinder:real-time trackingof the human body[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,1997,19(7):780-785. 被引量:1
  • 5Stauffer C,Grimson W E L.Adaptive background mixture models forreal-time tracking[C]//Proceedings of the IEEE Computer SocietyConference on Computer Vision and Pattern Recognition.Fort Collins,USA:IEEE,1999,246-252. 被引量:1
  • 6Elgammal A,Harwood D,Davis L.Non-parametric model for back-ground subtraction[C]//Proceedings of the 6th European Conferenceon Computer Vision.Dublin,Ireland:Springer,2000:751-767. 被引量:1
  • 7Kim K,Chalidabhongse T H,Harwood D,et al.Real-time foreground-background segmentation using code book model[J].Real-Time Ima-ging,2005,11(3):172-185. 被引量:1
  • 8Toyama K,Kmmm J,Brumitt B,et al.Wallflower:principles andpraclice of baokground maintenance[C]//Proceedings of the 7th IEEEInternational Conference on Computer Vision.Kerkyra,Greece:IEEE,I999:255-261. 被引量:1
  • 9Li LiYuan,Huang WeiMin,Irene Gu YuHua,et al.Statistical model-ing of complex backgrounds for foreground object detection[J].IEEETransaction on Image Processing,2004,13(11):1459-1472. 被引量:1
  • 10Chalidahhongse T H,Kim K,Harwood D,et al.A Perturbation Meth-od for Evaluating Background Subtraction Algorithms[C]//Joint IEEE International Workshop on Visual Surveillance and Performance Evalu-ation of Tracking and Surveillance(VS-PETS 2003).Nice,France,2003. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部