期刊文献+

当量比对涡轮叶间燃烧性能影响的数值模拟 被引量:8

Numerical Simulation of Influence of Equivalence Ratio on Turbine Inter-Vane Burner
下载PDF
导出
摘要 为探究涡轮叶间燃烧性能,设计了4种不同当量比的工况,利用FLUENT软件的Realizable k-ε湍流模型、PDF燃烧模型、DO辐射模型和离散相模型对燃烧室的流动及燃烧进行数值模拟.结果表明:燃烧室能在广泛的当量比(2.59~0.81)下保持性能稳定,燃烧效率保持在96%以上、总压损失低于2.4%,气体温度提高650,K左右;降低当量比,能够提高燃烧效率,降低CO、UHC、NOx等污染物排放,改善温度分布,但会造成更大的总压损失;最优当量比等于1.00,此时燃烧效率在99.95%以上,总压损失相对低(1.5%),出口径向温度呈抛物线型分布,最适合燃烧室设计.与文献对比发现,选取的工况合理,其结果对涡轮叶间燃烧室设计具有参考价值. To investigate the performance of turbine inter-vane burner(TIB), 4 loading conditions with different equivalence ratios were designed. The realizable k-e turbulent model, PDF combustion model, DO radiation model and DPM model of FLUENT were used to simulate the turbulent flow and combustion in the burner. The TIB can in- crease the gas temperature by about 650 K under a wide range of equivalence ratio (2.59--0.81). The combustion effi- ciency remains above 96% with the total pressure loss less than 2.4%. As the equivalence ratio gets lower, the com- bustion efficiency is increased and the pollutant emissions of CO, UHC and NOx are decreased, thus improving the temperature distribution, but meanwhile increasing the total pressure loss. The optimal equivalence ratio equals 1.00, and in such a case, the combustion efficiency is above 99.95% and the total pressure loss is relatively low (1.5%). Meanwhile, a parabolic shape radial temperature profile emerges, which is appropriate for gas turbine engine design. The comparison with literature data shows that the loading conditions are reasonable and the numerical results provide an important reference to the design of TIB.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2012年第2期161-168,共8页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51076064)
关键词 燃气轮机 气液两相燃烧 超紧凑燃烧 涡轮叶间燃烧 当量比 数值模拟 gas turbines gas-liquid two phase combustion ultra-compact combustion turbine inter-vane burner equivalence ratio numerical simulation
  • 相关文献

参考文献15

  • 1Sirignano A W,Liu F. Performance increases for gasturbine engines through combustion inside the turbine[J].Journal of Propulsion and Power,1999,(01):111-118. 被引量:1
  • 2Liu F,Sirignano W A. Turbojet and turbofan engine performance increases through turbine burners[J].Journal of Propulsion & Power,2001,(03):695-705. 被引量:1
  • 3程本林,唐豪,徐夏,李校培.带TIB的涡扇发动机性能研究[J].航空发动机,2010,36(6):19-22. 被引量:11
  • 4Zelina J,Ehret J,Hancock R D. Ultra-compact combustion technology using high swirl for enhanced burning rate[AIAA-2002-3725][A].Indianapolis,Indiana,2002. 被引量:1
  • 5Greenwood R T. Numerical Analysis and Optimization of the Ultra Compact Combustor AD434747[R].Ohio:Department of the Air Force,Air University,2005. 被引量:1
  • 6Thomburg H,Sekar B,Zelina J. Numerical study of an inter-turbine burner (ITB) concept with curved radial vane[A].Reno,Nevada,CA,2007. 被引量:1
  • 7Thibaud V M. Numerical Investigation of Ultra-Compact Combustor Models for Turbine Inter-Blade Burner (TIB)[D].Nanjing:College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,2011. 被引量:1
  • 8Anisko J. Numerical Investigation of Cavity-Vane Interactions within the Ultra Compact Combustor ADA449336[R].Ohio:Department of the Air Force,Air University,2006. 被引量:1
  • 9FLUENT Inc. GAMBIT 2.0 User's Guide[M].New Hampshire USA:Fluent Ine,2001. 被引量:1
  • 10FLUENT Inc. FLUENT 6.3 User's Guide[M].New Hampshire USA:Fluent Inc,2006. 被引量:1

二级参考文献4

  • 1Ryder R C,Brankovic A,et al.CFD definition study of inter-stage burners in turbine engine transition duct[R].ASME 2003-GT-38440,2003. 被引量:1
  • 2Chiu Ya tien.A performance study of a super-cruise engine with isothermal combustion inside the turbine[M].Virginia polytechnic institute&state university,2004. 被引量:1
  • 3Zelina J,Hankcock R D,et al.Ultra-compact combustors for advanced gas turbine engines[R].ASME 2004-GT-53155,2004. 被引量:1
  • 4McBride B J,Gordon S,et al.Coeffcients for Calculating Thermo dynamic and Transport Properties of Individual Species[R].NASA-TM-4513.1993. 被引量:1

共引文献10

同被引文献47

  • 1Sirignano W A,Delplanque J P,Liu F.Selected challenges in jet and rocket engine combustion research[R].AIAA 97-2701,1997. 被引量:1
  • 2Sirignano W A,Liu F.Performance increases for gas-turbine engines through combustion inside the turbine[J].Journal of Propulsion and Power,1999,15(1):111-118. 被引量:1
  • 3Ramohalli K N R.Isothermal combustion for improved efficiencies[R].AIAA 87-1999,1987. 被引量:1
  • 4Zelina J,Ehret J,Hangcock R D,et al.Ultra-compact combustion technology using high swirl for enhance burning rate[R].AIAA-2002-3725,2002. 被引量:1
  • 5Greenwood R T.Numerical analysis and optimization of the ultra compact combustor[R].AFIT/GAE/ENY/05-M10,2005. 被引量:1
  • 6Thornburg H,Sekar B,Zelina J,et al.Numerical study of an inter-turbine burner(ITB) concept with curved radial vane[R].AIAA-2007-649,2007. 被引量:1
  • 7Thibaud V M,TANG Hao.Numerical investigation turbine inter-blade(TIB) concepts with two different radial vane cavity shapes[R].Nanjing:7th International Conference on Computational and Experimental Engineering and Sciences,2011. 被引量:1
  • 8Sekar B,Thornburg H J,Briones A M,et al.Effect of trapped vortex combustion with radial vane cavity arrangements on predicted inter-turbine burner performance[R].AIAA-2009-4603,2009. 被引量:1
  • 9Thornburg H J,Briones A M,Sekar B.Enhanced mixing in trapped vortex combustor with protuberances:Part 1 single-phase nonreacting flow[R].AIAA-2011-3421,2011. 被引量:1
  • 10Briones A M,Sekar B,Thornburg H J.Enhanced mixing in trapped vortex combustor with protuberances: Part 2 two-phase reacting flow[R].AIAA-2011-3422,2011. 被引量:1

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部