摘要
There is a great demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. In this regard, ammonia borane (NH3BH3, AB) containing 19.6wt-% hydrogen has been considered as a promising material for hydrogen storage applications to realize the "hydrogen economy", but with limits from slow kinetics of hydrogen release and by-product of trace gases such as ammonia and borazine. In this review, we introduce the recent research on AB, regarding to the nanoconfinement effect on improving the kinetics at a relatively low temperature and the prevention/reduction of undesirable gas formation.
There is a great demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. In this regard, ammonia borane (NH3BH3, AB) containing 19.6wt-% hydrogen has been considered as a promising material for hydrogen storage applications to realize the "hydrogen economy", but with limits from slow kinetics of hydrogen release and by-product of trace gases such as ammonia and borazine. In this review, we introduce the recent research on AB, regarding to the nanoconfinement effect on improving the kinetics at a relatively low temperature and the prevention/reduction of undesirable gas formation.