期刊文献+

平面图无圈边着色的一个结果

A Result from Acyclic Edge Coloring of Plane Graphs
下载PDF
导出
摘要 图G的无圈边着色是指图G的一个正常边着色且不含双色的圈.图G的无圈边色数是指图G的无圈边着色中所用色数的最小者,用x'a(G)表示;证明了如果G是一个D中的顶点不与3-面相关联,3-顶点不与D中的顶点相邻且Δ(G)≥6的平面图,则x'a(G)≤Δ(G)+1。 An acyclic edge coloring of Graph G is a proper edge coloring without bichromatic cycles. The acyclic edge chromatic number of a graph G,denoted by x'a(G) ,is the minimum chromatic number in acyclic edge coloring. In this paper,we prove that x'a(G)≤△(G)+1. if the plane graph G satisfies that the vertex in D is not incident with a 3-face ,a 3-vertex is not adjacent to the vertex in D and△(G) ≥6.
出处 《重庆工商大学学报(自然科学版)》 2012年第4期17-19,共3页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 平面图 无圈边着色 无圈边色数 plane graphs acyclic edge coloring acyclic edge chromatic number
  • 相关文献

参考文献1

二级参考文献7

  • 1Salvatore Bellofiore,Constantine A Balanis,Jeffrey Foutz,et al.. Smart-antenna systems for mobile communication networks part 1 [J].IEEE Antennas and Propagation Magazine, 2002,44(3):145~154. 被引量:1
  • 2S Fiori.Blind signal processing by the adaptive activation function neurons[J].Neural Networks, 2000.13,(6)pp:579~611. 被引量:1
  • 3Shun-Ichi Amari,Andrzej Cichocki. Adaptive blind signal processing-neural network approaches [C].Proceedings of the IEEE, 1998, 86 (10):2026~2048. 被引量:1
  • 4Hugh L Southall, Jeffrey A Simmers,and Teresa H O'Donnell .Direction finding in phased arrays with a neural network beamformer[J].IEEE Transactions Antennas and Propagation, 1995, 43(12): 1369~1374. 被引量:1
  • 5Yong Up Lee,Jinho Choi,Iickho Song. Distributed source modeling and direction of arrival estimation techniques[J]. IEEE Transactions Antennas and Propagation, 1997, 45(4): 960~969. 被引量:1
  • 6Powell M JD. Radial basis functions for multiveariate interpolation: a review in algorithms for the approximation of functions and data[M].Mason J C,Cox M G eds.Oxford: Clarendon Press,1987. 被引量:1
  • 7蒋泽,杜惠平,赵为粮,阮颖铮.面向新一代移动通信的智能天线技术[J].电波科学学报,2001,16(3):342-347. 被引量:11

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部