摘要
图G的无圈边着色是指图G的一个正常边着色且不含双色的圈.图G的无圈边色数是指图G的无圈边着色中所用色数的最小者,用x'a(G)表示;证明了如果G是一个D中的顶点不与3-面相关联,3-顶点不与D中的顶点相邻且Δ(G)≥6的平面图,则x'a(G)≤Δ(G)+1。
An acyclic edge coloring of Graph G is a proper edge coloring without bichromatic cycles. The acyclic edge chromatic number of a graph G,denoted by x'a(G) ,is the minimum chromatic number in acyclic edge coloring. In this paper,we prove that x'a(G)≤△(G)+1. if the plane graph G satisfies that the vertex in D is not incident with a 3-face ,a 3-vertex is not adjacent to the vertex in D and△(G) ≥6.
出处
《重庆工商大学学报(自然科学版)》
2012年第4期17-19,共3页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
平面图
无圈边着色
无圈边色数
plane graphs
acyclic edge coloring
acyclic edge chromatic number