期刊文献+

COMMON FIXED POINTS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS

COMMON FIXED POINTS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS
下载PDF
导出
摘要 For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous approximation of the pair y1,y2 E ∈ if max{d(y1,go),d(y2,go)}=inf g∈K max {d(y1,g),d(y2,g)}.In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21]. For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous approximation of the pair y1,y2 E ∈ if max{d(y1,go),d(y2,go)}=inf g∈K max {d(y1,g),d(y2,g)}.In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21].
出处 《Analysis in Theory and Applications》 2012年第1期1-12,共12页 分析理论与应用(英文刊)
关键词 Banach operator pair best approximation demicompact fixed point STAR-SHAPED NONEXPANSIVE asymptotically nonexpansive and uniformly asymptot-ically regular maps Banach operator pair, best approximation, demicompact, fixed point, star-shaped, nonexpansive, asymptotically nonexpansive and uniformly asymptot-ically regular maps
  • 相关文献

参考文献21

  • 1Beg,I,Abbas,M. Common Fixed Points and Best Approximation in Convex Metric Spaces[J].Soochow Journal of Mathematics,2007.729-738. 被引量:1
  • 2Chandok,S,Narang,T.D. On Fixed Points and Common Fixed Points of Nonexpansive Mappings[J].Math Notae,2008.51-57. 被引量:1
  • 3Chandok,S,Narang,T.D. Some Common Fixed Point Theorems for Banach Operator P airs with Applications in Best Approximation[J].Nonlinear Analysis-Theory Methods and Applications,2010.105-109. 被引量:1
  • 4Chen,J,Li,Z. Common Fixed Points for Banach Operator Pairs in Best Approximations[J].Journal of Mathematical Analysis and Applications,2007.1466-1475. 被引量:1
  • 5(C)iri(c),L,Hussain,N,Caki(c),N. Common Fixed Points for (C)iri(c) type f-weak Contraction with Applications[J].Publicationes Mathematicae Debrecen,2009.1-19. 被引量:1
  • 6Goebel,K,Kirk,W.A. A Fixed Point Theorem for Asymptotically Nonexpansive Mappings[J].Proceedings of the American Mathematical Society,1972.171-174. 被引量:1
  • 7Guay,M.D,Singh,K.L,Whitfield,J.H.M. Fixed Point Theorems for Nonexpansive Mappings in Convex Metric Spaces[A].New York,USA:Marcel Dekker,Inc,1982.179-189. 被引量:1
  • 8Itoh,S. Some Fixed Point Theorems in Metric Spaces[J].Fundamenta Mathematicae,1979.109-117. 被引量:1
  • 9Jungck,G. Common Fixed Points for Commuting and Compatible Maps on Compacta[J].Proc American Math Soc,1988.977-983. 被引量:1
  • 10Jungck,G,Rhoades,B.E. Fixed Point for Set Valued Functions Without Continuity[J].Indian Journal of Pure and Applied Mathematics,1998.227-238. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部