期刊文献+

含有风力发电机组配电网多目标重构的研究 被引量:8

Distribution network multi-objective reconfiguration with wind turbines
下载PDF
导出
摘要 分布式电源(Distributed Generation,DG)发展很迅猛,对配电网络的各个方面产生不同程度的影响。为解决含有风力发电机组配电网多目标重构问题,提出将蚁群算法(ACO)和变邻域搜索算法(Variable Neigh borhood Search,VNS)、差分进化(Differential Evolution,DE)算法相结合,将风力发电机组视为PQ节点,以配电网网损最小和提高节点电压为多目标函数。以该算法对配电网开关开合状态和分布式电源输出功率同时优化,以达到多目标优化的要求,通过算例69节点系统的优化结果表明,该算法适合多目标优化,能够快速收敛到全局最优解,适合优化含有分布式电源的配电网。 Distributed generation (DG) has been developing rapidly, influencing all aspects of distribution network. To solve the issue of distribution network multi-objective reconfiguration with wind turbines, this paper proposes to combine ant colony algorithm (ACO) with variable neighborhood search algorithm (Variable Neighborhood Search, VNS) and the differential evolution (Differential Evolution, DE) algorithm, regarding the wind turbine as a PQ node, and the minimum loss in distribution network and the objective function increase as multi-objective function. The proposed algorithm optimizes the state of switch opening and closing of distribution system and distributed power output power, to meet the requirements of multi-objective optimization. The optimization results of 69-node system show that the algorithm is suitable for multi-objective optimization, can quickly converge to the global optimal solution for optimizing the distribution network with distributed generation.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2012年第8期63-67,共5页 Power System Protection and Control
关键词 分布式电源 配电网重构 蚁群算法 变邻域搜索 差分进化 distributed generation(DG) distribution network reconfiguration ant colony algorithm variable neighborhoodsearch(VNS) differential evolution
  • 相关文献

参考文献17

二级参考文献155

共引文献1229

同被引文献121

  • 1刘蔚,韩祯祥.基于最优流法和遗传算法的配电网重构[J].电网技术,2004,28(19):29-33. 被引量:70
  • 2汪超,马红卫,胡志坚,蔡勇军,陈丹,孙华伟.基于蚁群系统(ACS)的配电网重构[J].继电器,2006,34(23):35-38. 被引量:8
  • 3Chiradeja. P, Ramakumar R. An approach to quantify the technical benefits of distributed generation[J]. IEEE Trans on Energy Conversion, 2004, 19(4): 764-773. 被引量:1
  • 4Hamedani G M E, Arefifar S A. Distributed generation, reactive sources and network-configuration planning for power and energy-loss reduction[J]. IEEE Proceedings of Generation Transmission and Distribution, 2006, 153(2): 127-136. 被引量:1
  • 5Mojdehi M N, reconfiguration Kazemi A, to maximize Barati M. Network operation and social welfare with distributed generations[C]//EUROCON 2009. Petersburg: EUROCON 2009 2009: 552-557. 被引量:1
  • 6Liu X, Wang H T, Zhou Q Y, et al. Power system probabilistic cost production simulation with wind power penetration based on multi-state system theory[C]// Power and Energy Society General Meeting. San Diego: Power and Energy Society General Meeting, 2012: 1-7. 被引量:1
  • 7Karaki S H, Chedid R B, Ramadan R. Probabilistic performance assessment of autonomous solar-wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 766-772. 被引量:1
  • 8Wu L, Park J, Choi J, et al. Probabilistic reliability evaluation of power systems including wind turbine generators using a simplified multi-state model: a case study[C]//Power & Energy Society General Meeting. Calgary: Power & Energy Society General Meeting, 2009: 1-6. 被引量:1
  • 9Mehrtash A, Wang P, Goel L. Reliability evaluation of restructured power systems with wind farms using equivalent multi-state models [C]// Probabilistic Methods Applied Power Systems (PMAPS). Singapore: Probabilistic Methods Applied Power Systems (PMAPS),2010: 716-721. 被引量:1
  • 10Zhang P, Lee S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion[J]. IEEE Trans on Power Systems, 2004, 19(1): 676-682. 被引量:1

引证文献8

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部