期刊文献+

混合PSO在最小均方误差调节器中的应用 被引量:2

Application of Hybrid PSO to Least Mean Square Error Regulator
下载PDF
导出
摘要 利用最小均方误差调节器来改善有限拍系统是一种常用的方法,而调节器参数的选择是非常重要的。本文在确定最小均方误差调节器的过程中设计基于模拟退火的粒子群算法对参数进行了优化,并对一具体系统进行了仿真。结果表明,混合粒子群算法比单独使用粒子群算法和模拟退火算法的效果要好,同相关文献确定参数方法相比,系统的超调量和调节时间都得到了明显的改善,验证了所提算法的有效性。 The least mean square error regulator is adopted to improve performance of the dead beat control system as one method in common use, while selection of the regulator parameter is very important. This paper designs the particle swarm optimization algorithm based on simulated annealing to optimizing parameter in the course of defining the least mean square error regulator, which is used in simulating the concrete system. The results show that Hybrid PSO can get better optimization effect than SA or PSO single used, compared with the method of determining parameters in the relevant literature,while the overshoot and settling time of the system are improved obviously, which validates the effectiveness of the algorithra put forward.
出处 《计算机系统应用》 2012年第4期212-215,共4页 Computer Systems & Applications
基金 安徽省教育厅自然科学基金(2005KJ004ZD)
关键词 最小均方误差 参数选择 粒子群算法 模拟退火 优化 least mean square error parameter selection particle swarm optimization simulated annealing: optimization
  • 相关文献

参考文献8

二级参考文献62

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 3丁刚,钟诗胜.基于过程神经网络的时间序列预测及其应用研究[J].控制与决策,2006,21(9):1037-1041. 被引量:18
  • 4[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 5[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 6[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 7[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 8[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 9[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1
  • 10[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994. 被引量:1

共引文献518

同被引文献26

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部