期刊文献+

Quantitative Structure-retention Relationship Study of Polychlorinated Dibenzothiophenes by Molecular Electronegativity Distance Vector(MEDV)

Quantitative Structure-retention Relationship Study of Polychlorinated Dibenzothiophenes by Molecular Electronegativity Distance Vector(MEDV)
下载PDF
导出
摘要 Polychlorinated dibenzothiophenes(PCDTs) are classified as persistent organic pollutants in the environment,so the analysis of PCDTs by their gas chromatographic behaviors is of great significance.Quantitative structure-retention relationship(QSRR) analysis is a useful technique capable of relating chromatographic retention time to the molecular structure.In this paper,a QSRR study of 37 PCDTs was carried out by using molecular electronegativity distance vector(MEDV) descriptors and multiple linear regression(MLR) and partial least-squares regression(PLS) methods.The correlation coefficient R of established MLR,PLS models,leave-one-out(LOO) cross-validation(CV),Q2ext were 0.9951,0.9942,0.9839(MLR) and 0.9925,0.9915,0.9833(PLS),respectively.Results showed that the model exhibited excellent estimate capability for internal sample set and good predictive capability for external sample set.By using MEDV descriptors,the QSRR model can provide a simple and rapid way to predict the gas-chromatographic retention indices of polychlorinated dibenzothiophenes in conditions of lacking standard samples or poor experimental conditions. Polychlorinated dibenzothiophenes(PCDTs) are classified as persistent organic pollutants in the environment,so the analysis of PCDTs by their gas chromatographic behaviors is of great significance.Quantitative structure-retention relationship(QSRR) analysis is a useful technique capable of relating chromatographic retention time to the molecular structure.In this paper,a QSRR study of 37 PCDTs was carried out by using molecular electronegativity distance vector(MEDV) descriptors and multiple linear regression(MLR) and partial least-squares regression(PLS) methods.The correlation coefficient R of established MLR,PLS models,leave-one-out(LOO) cross-validation(CV),Q2ext were 0.9951,0.9942,0.9839(MLR) and 0.9925,0.9915,0.9833(PLS),respectively.Results showed that the model exhibited excellent estimate capability for internal sample set and good predictive capability for external sample set.By using MEDV descriptors,the QSRR model can provide a simple and rapid way to predict the gas-chromatographic retention indices of polychlorinated dibenzothiophenes in conditions of lacking standard samples or poor experimental conditions.
机构地区 School of Life Science
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第3期429-437,共9页 结构化学(英文)
基金 supported by the Foundation of Returned Scholars (Main Program) of Shanxi Province (200902)
关键词 molecular electronegativity distance vector(MEDV) polychlorinated dibenzothio-phenes(PCDTs) quantitative structure-retention relationship(QSRR) retention indices(RI) molecular electronegativity distance vector(MEDV) polychlorinated dibenzothio-phenes(PCDTs) quantitative structure-retention relationship(QSRR) retention indices(RI)
  • 相关文献

参考文献3

二级参考文献31

  • 1HyperChem 6. 01, Hypercube, Inc. 2000. 被引量:1
  • 2Stewart, J. P. P. MOPAC 6.0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington 1989. 被引量:1
  • 3Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA: Training Manual, University of Florida, Gainesville 1995. 被引量:1
  • 4Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA: Reference Manual, University of Florida, Gainesville 1994. 被引量:1
  • 5Katritzky, A. R.; Perumal, S.; Perumal R. J. Org. Chem. 2001, 66, 403G4040. 被引量:1
  • 6Taimm, K.; Fara, D. C.; Katritzky, A.R. J. Phys. Chem. A 2004, 108, 4812-4818. 被引量:1
  • 7Stanton, D.T.;Jurs, E C. Anal. Chem. 1990,62,323-2329. 被引量:1
  • 8Xue, C. X.; Zhang, R. S.; Liu, H. X.J. Chem. Inf. Comput. Sci. 2004, 44, 1693-1700. 被引量:1
  • 9Heberger, K.J. Chromatogr..4 2007, 1158, 273-305. 被引量:1
  • 10Liu, F. P.; Liang, Y. Z.; Cao, C. Z.; Zhou N. Anal. Chim. Acta 2007, 594, 279-289. 被引量:1

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部