期刊文献+

项链的若干染色问题 被引量:3

Several Coloring Problems Involving the Necklace
原文传递
导出
摘要 图的染色问题是图论研究的经典领域,在网络结构和实际生活中都有着广泛的应用。染色问题是近年来图论研究的热点,全染色,特别是邻点可区别全染色又是染色问题中的难点。本文研究了当h≥3(h能确定项链的顶点个数,Nh中的h表示项链有2h+2个顶点)时,项链的邻点可区别全染色、点边邻点可区别全染色和关联邻点可区别全染色。通过在项链的点边集合与色集合之间构造一种一一对应关系,得到它们的色数分别是5、3、4,同时给出了具体的染色方案。 The coloring problem of graph is the classical field of graph theory which is widely used in the network structure and practical life. The coloring problem is becoming a hot topic in recent years. However, the total coloring, especially adjacent vertex-distinguishing total coloring is a difficult point of the coloring problem. For a necklace, the adjacent vertex-distinguishing total coloring, the adjacent vertex-distinguishing vertex edge total coloring, and the incidence adjacent vertex-distinguishing total coloring are discussed when h/〉 3 (h is able to determine the number of vertices of necklace, h means that the necklace has 2h+2 vertices in the Nh). Through setting up a corresponding relation between theset of vertices and edges and the set of color, the corresponding chromatic numbers of the adjacent vertex-distinguishing total coloring, the adjacent vertex-distinguishing vertex edge total coloring, and the incidence adjacent vertex- distinguishing total coloring are obtained, the chromatic numbers for a necklace are five, three, and four, respectively. At the same time, the corresponding coloring schemes are given.
出处 《科技导报》 CAS CSCD 北大核心 2012年第7期44-47,共4页 Science & Technology Review
基金 河南省杰出青年计划项目(084100510013) 河南省高校科技创新人才支持计划项目(2008HASTITO23)
关键词 项链:邻点可区别全染色 点边邻点可区别全染色 关联邻点可区别全染色 necklace adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing vertex edge total coloring incidenceadjacent vertex-distinguishing total coloring
  • 相关文献

参考文献6

  • 1张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 2Zhang Z F,Douglas R W,Li J. Incidence adjacent vertexdistinguishing total coloring of graphs[R].Lanzhou:Lanzhou Jiaotong University,2008.1-8. 被引量:1
  • 3田宝玉,闫喜红.项链的强色数与点强全色数[J].中北大学学报(自然科学版),2011,32(2):119-122. 被引量:1
  • 4Bondy J A,Murty U S R. Graph theory with applications[M].New York:The Macmillan Press Ltd,1976. 被引量:1
  • 5Stadler P F. Minimum cycle bases of Halin graphs[J].Graph Theory,2003,(2):150-155.doi:10.1002/jgt.10111. 被引量:1
  • 6Zhang Z,Qiu P,Xu B. Vertex-distinguishing total coloring of graphs[J].ARS Combinatoria,2008.33-45. 被引量:1

二级参考文献11

  • 1刘林忠,张忠辅.最大度不大于5的Halin-图的点强全染色(英文)[J].经济数学,2002,19(1):77-80. 被引量:10
  • 2刘景发,黄文奇.若干图的强染色(英文)[J].经济数学,2004,21(1):78-82. 被引量:2
  • 3Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J of Graph Theory,1997,26(2): 73-82 被引量:1
  • 4Bazgan C,Harkat-Benhamdine A,Li H,et al.On the vertex-distinguishing proper edge-coloring of graphs.J Combin Theory,Ser B,1999,75: 288-301 被引量:1
  • 5Balister P N,Bollobas B,Schelp R H.Vertex distinguishing colorings of graphs with △(G)=2.Discrete Mathematics,2002,252(2): 17-29 被引量:1
  • 6Zhang Zhongfu,Liu Linzhong,Wang Jianfang.Adjacent strong edge coloring of graphs.Applied Mathematics Letters,2002,15:623-626 被引量:1
  • 7Dietel Reinhard.Graph Theory.New York:Springer-Verlag,1997 被引量:1
  • 8Chartrand G,Lesniak-Foster L.Graph and Digraphs.2nd Edition.Monterey,CA: WadsworthBrooks/Cole,1986 被引量:1
  • 9Hansen P,Marcotte O.GraphColoring and Application.Providence: AMS,1999 被引量:1
  • 10Bondy J A,Murty U S R.Graph Theory with Applications.New York: American Elsevier,1976 被引量:1

共引文献191

同被引文献17

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部