期刊文献+

混合插值法重构近地表模型 被引量:6

A Hybrid Interpolation for Reconstructing Near-Surface Model
下载PDF
导出
摘要 当控制点多和网格稠密时,基于薄板样条(TPS)插值的近地表模型重构往往很耗时,影响了静校正中近地表建模的效率.针对此问题,采用一种TPS插值和三次样条插值相结合的混合插值法重构近地表模型.首先利用矩阵递归LU分解及GPU加速的LU分解算法求解大型线性方程组,建立TPS插值函数;然后在X和Y方向上使用适当的步长对网格进行抽稀,运用TPS插值函数计算稀疏网格点的值,再通过稀疏网格点建立三次样条插值函数并计算剩余网格点的值;最后用OpenGL实现近地表模型的三维可视化.实验结果表明,文中算法提高了近地表模型重构的速度,其精度接近TPS插值精度. When both the number of control points and the size of grid become large,TPS based reconstruction of near-surface model is often very time-consuming.Therefore,such method affects the efficiency of building near-surface model in the static correction.To address this problem,a hybrid interpolation combining TPS with cubic spline interpolation is used for reconstructing near surface model.Firstly,not only recursive LU decomposition but also GPU based LU decomposition is used to solve large linear system of equations.And then,TPS interpolation function is created.Secondly,the grid is rarefied with appropriate steps in the X and Y directions and then,TPS interpolation function is evaluated on the sparse grid.Based on which cubic spline interpolation function is created and then,it calculates the value of the other points.Finally,OpenGL visualizes the 3D near-surface model.The experimental results show that this algorithm speeds up the reconstruction of near-surface model and approximates the TPS interpolation in accuracy.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第4期466-470,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 中央高校基本科研业务费专项资金(2-9-2011-0187)
关键词 薄板样条 近地表模型 静校正 三次样条 递归LU分解 thin-plate spline near-surface model static correction cubic spline recursive LU decomposition
  • 相关文献

参考文献13

二级参考文献28

  • 1李明,谢大进,徐中信,高恩源.三维地震勘探低速带静校正系统的研制[J].石油物探,1994,33(3):8-19. 被引量:1
  • 2OWENS J D, LUEBKE D, GOVINDARAJU N, et al. A survey of general purpose computation on graphics hardware [ J]. Computer Graphics Forum, 2007, 26(1) : 80 - 113. 被引量:1
  • 3Nvidia Corporation. NVIDIA CUDA programming guide V3.0 [ EB/ OL]. [2010-08-20]. http://www, nvidia, com/cuda. 被引量:1
  • 4LUEBKE D, HARRIS M, KRUGER J, et al. GPGPU: General- purpose computation on graphics hardware [ C]//Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. Washington, DC: IEEE Computer Society, 2006:10 - 16. 被引量:1
  • 5HUSBANDS P, YELICK K. Multi-threading and one-sided commu- nication in parallel LU factorization [ C]// Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Washington, DC: IEEE Computer Society, 2007:1 - 10. 被引量:1
  • 6DAVIES B, MARTIN B. Numerical inversion of the Laplace trans- form: A survey and comparison of methods [ J]. Journal of Computa- tional Physics, 1979, 3(1) : 1 -32. 被引量:1
  • 7MANAVSKI S A. CUDA compatible GPU as an efficient hardware accelerator for AES cryptography [ C]//Proceedings of IEEE Inter- national Conference on Signal Processing and Communication. Washington, DC: IEEE Computer Society, 2007:65-68. 被引量:1
  • 8SZERWINSKI R, GUNEYSU T. Exploiting the power of GPUs for asymmetric cryptography [ C]// CHES 2008: Proceedings of the 10th International Workshop on Cryptographic Hardware and Embed- ded Systems, LNCS 5154. Berlin: Springer, 2008:79-99. 被引量:1
  • 9DONGARRA J, HAMMARLING S, WALKER D. Key concepts for parallel out-of-core LU factorization [ J]. Computers and Mathemat- ics with Applications, 1998, 35(7) : 13 -31. 被引量:1
  • 10杨宝林,石油地球物理勘探,1988年,23卷,5期,569页 被引量:1

共引文献43

同被引文献61

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部