摘要
对前郭灌区主要面源污染物迁移、转化及汇集过程开展了2a的系统试验与监测,模拟了灌区面源污染水质水量过程,分析了灌区农田面源污染形成机制。水均衡测定结果表明,灌区排水主要由灌溉退水、稻田地表弃水和稻田渗流排水3部分组成,采用马斯京根法和连续分段马斯京根法能够有效地模拟各级排水沟道的排水过程。主要面源污染物随水体发生迁移及掺混,采用一级动力学方法描述污染物转化过程,模拟的灌区水质水量过程与实际过程符合较好,稻田地表退水主要影响水稻抽穗前的面源污染入河过程,而渗流排水则在抽穗后灌区排水水质中起主要作用。结果表明水稻灌区中地表排水和稻田渗漏排水对于面源污染过程起主要作用。
The transport and transformation processes of non-point source pollutions form paddy rice field to the main drainage canal through lateral and branch drainage canals were monitored in the Qianguo irrigation district during the rice growing seasons in 2009 and 2010. Water balance were measured in lateral canal in the controlled irrigation region. Results showed that the drainage water were composed of the rice field surface retumed water, the irrigation returned water and the seepage from rice field to the drainage canals. Drainage processes in branch and main canal were simulated using the Muskingum method and the Muskingum segmentation flow routing method, respectively. The transport processes of chemical concentrations were determined by the mix and convection of water flow and the transformation processes were described using the first order kinetic equation. Drainage processes and contaminant concentration simulated showed good agreements with the measured values. The returned water and seepage from rice field played key roles in the process of agricultural non point pollution into the river. This research suggested the surface drainage and seepage water contributed to the non-point source pollution in the paddy irrigation district.
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2012年第6期112-119,共8页
Transactions of the Chinese Society of Agricultural Engineering
基金
农业部作物需水与调控开放实验室开放课题(CWRR200901)
国家自然科学基金(51039007
50979076)
国家973项目(2010CB428802-4)
关键词
排水
污染
模型
水文
水稻灌区
drainage, pollution, models, hydrology, paddy rice irrigation district