期刊文献+

一种基于优化的自适应遗传算法的粒子滤波算法 被引量:1

A Particle Filter Algorithm based on the Improved Adaptive Genetic Algorithm
下载PDF
导出
摘要 针对粒子滤波的粒子退化现象及多样性损失问题,提出了一种新的基于优化的自适应遗传算法的粒子滤波算法。该算法首先依据每个采样时刻生成的粒子集合重要性权值作为适应度值,自适应的确定交叉、遗传的概率;然后对选出的粒子进行遗传操作,重新度量其粒子的权值并进行状态估计。该方法不仅保留了粒子的多样性,而且相对于普通的基于自适应遗传算法的粒子滤波算法,降低了高权值粒子交叉和变异的可能,使粒子的采样更接近于状态后验概率密度分布。实验结果表明,该算法有效提高了滤波精度。 A new particle filter algorithm based on the improved adaptive genetic algorithm was proposed for moving the degeneracy phenomenon and alleviating the sample impoverishment problem in the particle filter.At first,the algorithm used the importance weight of particles to weigh their fitness value and determined the probability of particles to experience genetic manipulation adaptively according to their fitness value.Then,it implemented the crossover and mutation operation to the samples selected,weighed the particles again and estimated the state.This method not only reserves diverse sex of particle,but also is more than the common particle filter algorithm based on the adaptive genetic algorithm to lowered high weighed particle's crossover and mutation possibility,make the sampling of particles distributed more close to the posterior density distribution of the state.The simulation results show that the proposed algorithm effectively improved the accuracy of filtering.
出处 《计算机安全》 2012年第3期13-16,共4页 Network & Computer Security
关键词 粒子滤波 自适应遗传算法 交叉概率 变异概率 particle filter adaptive genetic algorithm crossover possibility mutation possibility
  • 相关文献

参考文献8

  • 1BB.Efron and R.J.Tibshirani.An Introduction to the Bootstrap[J].Chapman&Hall,1993:34-69. 被引量:1
  • 2J.Carpenter,P.Clifford and P.Fearnhead.An improved particle filter for non-linear problems.IEEE Proc.Radar Sonar Navigation[J].1999,146(3):2-7. 被引量:1
  • 3J.S.Liu,R.Chen.Sequential Monte-Carlo methods for dynamic systems[D].J of the American Statistical Association.1998,93(443):1032-1044. 被引量:1
  • 4A.Doucet,S.J Godsill,C.Andrieu.On sequential simulation-based methods for Bayesian filtering.Spastics and Computing[J].2000,10(3):197-208. 被引量:1
  • 5叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 6Hammersly J.M.Morton K.W.Poor Mans Monte Carlo[J].J of the Royal Statistical Society B.1954,16(1):23-38. 被引量:1
  • 7Gordon N.Salmond D.A Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimation[J].Proc of Institute Electric Engineering.1993,140(2):107-113. 被引量:1
  • 8Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Transactions on Systems,Man and Cybernetics,1994,24(4):656-667. 被引量:1

二级参考文献8

  • 1Huang A J.A tutorial on Bayesian estimation and tracking techniques applicable to non-linear and non-Gaussian process[Online],available:http://www.mitre.org/work/tech_papers/tech_papers_05/05_0211/05_0211.pdf,February 11,2005 被引量:1
  • 2Doucet A,Godsill S,Chistophe A.On sequential Monte Carlo sampling methods for Bayesian filtering.Statistics and Computing,2000,10(3):197-208 被引量:1
  • 3Isard M,Blake A.Condensation-conditional density propagation for visual tracking.International Journal of Computer Vision,1998,29(1):5-28 被引量:1
  • 4Cho J U,Jin S H,Pham X D,Jeon J W,Byun J E,Kang H.A real-time object tracking system using a particle filter.In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.IEEE,2006.2822-2827 被引量:1
  • 5Haykin S,Huber K,Chen Z.Bayesian sequential state estimation for mimo wireless communications.Proceedings of the IEEE,2004,92(3):439-454 被引量:1
  • 6Gordon N,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation.IEE Proceedings F Radar and Signal Processing,1993,140(2):107-113 被引量:1
  • 7Liu J S,Chen R,Logvinenko T.A theoretical framework for sequential importance sampling and resampling.Sequential Monte Carlo in Practice.New York:Springer-Verlag,2001.225-246 被引量:1
  • 8Doucet A,Godsill S J,West M.Monte Carlo filtering and smoothing with application to time-varying spectral estimation.In:Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing.IEEE,2000.1701-1704 被引量:1

共引文献42

同被引文献13

  • 1VALYRAKIS A, TSAKONAS E E, SIDIROPOULOS N D, et al. Sto- chastic modeling and particle filtering algorithms for tracking a fre- quency-hopped signal [J]. IEEE Trans on Signal Processing, 2009,57(8) :3108-3118. 被引量:1
  • 2GORDON N, SALMOND D. Novel approach to non-linear and non- Gaussian Bayesian state estimation [ J]. Proceedings of Institute Electric Engineering,1993,140(2) :107-113. 被引量:1
  • 3BELVIKEN E, ACKLAM P J. Monte Carlo filters for non-linear state estimation [ J ]. Automatica, 2001, 37 ( 1 ) : 177-183. 被引量:1
  • 4GILIKS W R, BERZUINI C. Following a moving target Monte Carlo inference for dynamic Bayesian models [ J ]. Journal of the Royal Statistical Society ,2001,63 ( 1 ) :127-146. 被引量:1
  • 5CARPENTER J, CLIFFORD P, FEARNHEAD P. An improved par- ticle filter for non-linear problems [ J ]. I EEE Proceedings on Radar Sonar Navigation, 1999,146 ( 1 ) :2- 7. 被引量:1
  • 6BOLIC M, DJURICJ P M, HONG S. Resampling algorithms and ar- chitectures for distributed particle filters[J]. IEEE Tmns on Signal Processing, 2005,53 ( 7 ) : 2442 - 2450. 被引量:1
  • 7TAYLOR M S, THOMPSON J R. A data based algorithms for the generation of random vectors [ J ]. Computational Statistics & Data Analysis, 1986,4 (2) :93-101. 被引量:1
  • 8罗飞腾.目标跟踪的粒子滤波技术研究[D].杭州:中国科学技术大学,2010. 被引量:2
  • 9程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:99
  • 10许丽佳,王厚军,龙兵.一种状态监测与健康评估方法及其在模拟电路中的应用[J].计算机辅助设计与图形学学报,2008,20(12):1550-1556. 被引量:17

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部