期刊文献+

Compact implicit integration factor methods for some complex-valued nonlinear equations 被引量:1

Compact implicit integration factor methods for some complex-valued nonlinear equations
下载PDF
导出
摘要 The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient. The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
作者 张荣培
机构地区 School of Sciences
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期49-53,共5页 中国物理B(英文版)
关键词 compact implicit integration factor method finite difference nonlinear Schrodinger equa-tion complex Ginzburg Landau equation compact implicit integration factor method, finite difference, nonlinear Schrodinger equa-tion, complex Ginzburg Landau equation
  • 引文网络
  • 相关文献

参考文献16

  • 1Gottlieb S, Shu C W and Tadmor E 2001 SIAM Rev. 43 89. 被引量:1
  • 2Ascjer U M, Ruuth S J and Spiteri R J 1997 Appl. Numer. Math. 25 151. 被引量:1
  • 3Dutt A, Greengard L and Rokhlin V 2000 BIT 40 241. 被引量:1
  • 4Cox S M and Matthews P C 2002 Y. Comput. Phys. 176 430. 被引量:1
  • 5Nie Q, Zhang Y T and Zhao R 2006 J. Comput. Phys. 214 521. 被引量:1
  • 6Nie Q, Wan F, Zhang Y T and Liu X F 2008 J. Comput. Phys. 227 5238. 被引量:1
  • 7Gao Z and Xie S S 2011 Appl. Numer. Math. 61 593. 被引量:1
  • 8Xu Y and Shu C W 2005 J. Comput. Phys. 205 72. 被引量:1
  • 9de la Hoz F and Vadillo F 2008 Comput. Phys. Commun. 179 449. 被引量:1
  • 10Zhou C T, Yu M Y and He X T 2006 Phys. Rev. E 73 026209. 被引量:1

同被引文献2

引证文献1

二级引证文献1

;
使用帮助 返回顶部