期刊文献+

时标上两种群竞争动力系统周期解的存在性 被引量:1

Periodic solutions for two-species competition dynamic system on time scales
下载PDF
导出
摘要 在时标理论和拓扑度理论基础之上,通过应用重合度理论的连续定理和一些时标上积分不等式技巧,给出了时标上一类非自治两种群Lotka-Volterra竞争系统正周期解存在性的充分条件.取得的结果在生态管理中具有现实意义和应用价值. Based on the theory of the time scales and topological degree theory, by using continuation theorem of coincidence degree theory and some skills of integral inequalities on time scales, the sufficient condition of the existence of periodic solutions for a non-autonomous two-species Lotka-Voherra competition system on time scales is obtained. The obtained result has practical significance and application value in ecological management.
作者 王斌
出处 《贵州师范大学学报(自然科学版)》 CAS 2012年第2期44-48,共5页 Journal of Guizhou Normal University:Natural Sciences
关键词 时标 周期解 竞争动力系统 重合度理论 time scales periodic solutions competition dynamic system coincidence degree theory
  • 相关文献

参考文献17

  • 1Hilger S.Analysis on measure chains-a unified approachto continuous and discrete calculus[J].Results Math.1990,18:18-56. 被引量:1
  • 2Lakshmikantham V,Sivasundaram S,Kaymakcalan B.Dynamic Systems on Measure Chains[M].Boston,Klu-wer Academic,1996. 被引量:1
  • 3Agarwal R P,Bohner M.Basic calculus on time scalesand some of its applications[J].Results Math,1999,35:3-22. 被引量:1
  • 4Bohner M,Peterson A.Advances in Dynamic Equationson Time Scales[M].Birkhuser,Boston,2003. 被引量:1
  • 5Bohner M,Peterson A.Dynamic Equations on TimeScales:An Introduction with Applications[M].Boston:Birkhauser,2001. 被引量:1
  • 6张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 7Sequeira R.Dixon A F G.Population dynamics of tree-dwelling aphids:the importance of seasonality and timescale [J].Ecology,1997,78(8):2603-2610. 被引量:1
  • 8Gopalsamy K.Time lags and global stability in two spe-cies competition[J].Bull Math Biol,1980,42(5):729737. 被引量:1
  • 9Bohner M,Fan M,Zhang J.Existence of periodic solu-tions in predator–prey and competition dynamic systems[J].Nonlinear Anal RWA,2006,7(5):1193-1204. 被引量:1
  • 10Bohner M,Fan M,Zhang J.Periodicity of scalar dynam-ic equations and applications to population models[J].JMath Anal Appl,2007,330(1):1-9. 被引量:1

二级参考文献64

  • 1张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 2Huo H. Periodic solutions for a semi-ratio-dependent predator-prey system with functional responses[J]. Appl Math Letters,2005.18(3):313-320. 被引量:1
  • 3Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Springer, Berlin,1977. 被引量:1
  • 4Leslie P H, Gower J C, The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960,47 : 219-234. 被引量:1
  • 5Wang Q, Fan M. Wang K. Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functionalresponses[J]. J Math Anal Appl,2003.278(2):443-471. 被引量:1
  • 6Bohner M, Fan M, Zhang J. Existence of periodic solutions in predator-prey and competition dynamic systems[J]. Nonlinear Analysis : Real World Applications ,2006,7(5): 1193-1204. 被引量:1
  • 7Freedman H I. Deterministic Mathematical Models in Population Ecology [M ]. Monograph Textbooks Pure Applied Math, Marcel Dekker, New York, 1980,57. 被引量:1
  • 8Fazly M, Hesaaraki M. Periodic solutions for a discrete time predator-prey system with monotone functional responses[J]. C R Acad Sci Paris, Set I,2007,345(4):199-202. 被引量:1
  • 9Ding X, Lu C, Liu M. Periodic solutions for a semi-ratio-dependenl predator-prey system with nonmonotonic functional response and time delay[J]. Nonlinear Analysis: Real World Applications.2008,9(3):762-775. 被引量:1
  • 10Fan Meng, Kuang Yang. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J]. JMath Anal Appl, 2004, 295 ( 1 ) : 15- 39. 被引量:1

共引文献41

同被引文献21

  • 1LIU Gui-rong, YAN Ju-rang. Positive Periodic Solutions for a Neutral Delay Ratio-Dependent Predator-Prey Model with a Holling Type II Functional Response [J]. Nonlinear Anal RWA, 2011, 12(6) : 3252--3260. 被引量:1
  • 2ZHU Yan-ling, WANG Kai. Existence and Global Attractivity of Positive Periodic Solutions for a Predator-Prey Model with Modified Leslie-Gower Holling-Type II Schemes [J]. J Math Anal Appl, 2011, 384(2) : 400--408. 被引量:1
  • 3HILGER S. Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus [J]. Results Math, 1990, 18 18--56. 被引量:1
  • 4LAKSHMIKANTHAM V, SIVASUNDARAM S, KAYMAKCALAN B. Dynamic Systems on Measure Chains [M]. Boston: Kluwer Academic, 1996. 被引量:1
  • 5AGARWAL R P, BOHNER M. Basic Calculus on Time Scales and Some of Its Applications [J]. Results Math, 1999, 35: 3--22. 被引量:1
  • 6BOHNER M, PETERSON A. Advances in Dynamic Equations on Time Scales [M]. Boston: Birkhauser, 2003. 被引量:1
  • 7BOHNER M, PETERSON A. Dynamic Equations on Time Scales: An Introduction with Applications [M]. Boston: Birkhauser, 2001. 被引量:1
  • 8SEQUEIRA R, DIXON AF G. Population Dynamics of Tree-dwelling Aphids: the Importance of Seasonality and Time Scale [J]. Ecology, 1997, 78(8): 2603--2610. 被引量:1
  • 9ZHANG Ji-min, FAN Meng, ZHU Huai-ping. Periodic Solution of Single Population Models on Time Scales [J]. Math Comp Model, 2010, 52(3): 515--521. 被引量:1
  • 10ZENG Zhi-jun. Periodic Solutions for A Delayed Predator-Prey System with Stage-Structured Predator on Time Scales [J]. Comput MathAppl, 2011, 61(11): 3298--3311. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部