期刊文献+

基于光谱知识的高光谱图像自动识别方法 被引量:3

Automatic recognition of hyperspectral image based on spectral knowledge
下载PDF
导出
摘要 针对传统高光谱图像矿物识别方法未能充分利用矿物光谱诊断吸收特征与矿物光谱知识、识别过程人为干预多等问题,提出了一种基于光谱知识的高光谱图像自动识别方法.该方法引入了基于光谱吸收特征与波形特征的光谱知识作为自动识别的标准,利用连续统去除操作增强光谱吸收特征,采取基于光谱主次吸收特征的识别决策策略,建立多级约束准则以提高识别精度及避免误识别,通过利用模拟数据进行算法精度评价并应用航空高光谱成像仪AVIRIS(Airborne Visible/Infrared Imaging Spectrometer)数据进行应用分析与验证.结果表明:当图像信噪比大于200时,识别准确率可以达到80.3%,能够得到良好的识别结果以及较高的精度,并实现了基于高光谱图像的矿物自动识别. In order to solve the problems of current methods for mineral recognition from hyperspectral da- ta, such as the requirement for prior information, the failure to make full use of absorption features and the lack of the automation of recognition process, an automatic recognition approach based on the spectral knowl- edge was proposed. The spectral knowledge library including the spectral information and absorption features was generated as the recognition standard, in which the absorption features were enhanced by removing the continuum of image spectra and library spectra as well. The decision method was proposed based on the major and minor absorption features, and a multi-constraint criterion was established to improve the recognition accu- racy and avoid the false recognition. The accuracy evaluation of the proposed approach was .performed on the simulated data and the airborne visible/infrared imaging spectrometer (AVIRIS) data as well. Experimental results show that the recognition accuracy reaches 80.3% when the signal-to-noise of image is higher than 200. Fine results with the high accuracy are obtained by the proposed approach, and the mineral automatic recognition from hyperspectral data is achieved simultaneously.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第2期280-284,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家863计划资助项目(2008AA121102 2008AA12A201) 国家自然科学基金资助项目(61008047) 长江学者和创新团队发展计划资助项目(IRT0705)
关键词 高光谱遥感 自动识别 光谱吸收特征 hyperspectral remote sensing automatic recognition spectral absorption feature
  • 相关文献

参考文献10

二级参考文献76

共引文献155

同被引文献40

  • 1周强,甘甫平,王润生,陈建平.高光谱遥感影像矿物自动识别与应用[J].国土资源遥感,2005,17(4):28-31. 被引量:10
  • 2唐攀科,李永丽,李国斌,阎柏琨.成像光谱遥感技术及其在地质中的应用[J].矿产与地质,2006,20(2):160-165. 被引量:18
  • 3王润生,杨苏明,阎柏琨.成像光谱矿物识别方法与识别模型评述[J].国土资源遥感,2007,19(1):1-9. 被引量:52
  • 4MEMARSADEGHI NMOUNT D MNETANYAHU N Set al.A fast implementation of the ISODATA clustering algorithm[J].International Journal of Computational Geometry and Applications200717:71-103. 被引量:1
  • 5STRAHLER A H.The use of prior probabilities in maximum likelihood classification of remotely sensed data[J].Remote Sensing of Environment198010:135-163. 被引量:1
  • 65ITKENHEAD M JAALDERS I H.Classification of landsat thematic mapper imagery for land cover using neural networks[J].International Journal of Remote Sensing 200829(7):4129-4150. 被引量:1
  • 7BRUZZONE LPRIETO D FSERPICO S B.A neuralstatistical approach to multitemporal and multisource remotesensing image classification[J].IEEE Transactions on Geoscience and Remote Sensing199937(3):1350-1359. 被引量:1
  • 8RANIA CDEEPA S N.PSO with mutation for fuzzy classifier design[J].Procedia Computer Science20102:307-313. 被引量:1
  • 9MATHER P MKOCH M.Computer processing of remotelysensed images:An introduction[M].New York:John Wiley & SonsLtd2011:229-285. 被引量:1
  • 10LEITE P B CFEITOSA R QFORMAGGIO A Ret al.Hidden Markov models for crop recognition in remote sensing image sequences[J].Pattern Recognition Letters 201132:19-26. 被引量:1

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部