期刊文献+

一类带有阻尼项的共振问题的周期解 被引量:1

Periodic Solutions for a Class of Damped Vibration Problem
原文传递
导出
摘要 文章主要目的是研究一类带有阻尼项q(t)ù(t)的共振问题ü(t)+q(t)(u·)(t)-A(t)u(t)+▽F(t,u(t))=0 u(0)-u(T)=(u·)(0)-eQ(T)(u·)(T)=0的周期解的存在性。在F满足假设(A)及四个新的存在性条件下,通过使用临界点理论中的极大极小方法获得了一个新的存在性定理。 The purpose of this paper is to study the existence of periodic solutions for the following vibration problem with damping term q(t)it(t) {u(t)+q(t)u-A(t)+△F(t,u(t))=0 u(0)-u(0)-e^Q(T)u(T)=0 When F satisfies assumption (A) and four new existence conditions, One new existence theorem is obtained by the minimax methods in critical point theory.
作者 王少敏
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期60-64,共5页 Journal of Chongqing Normal University:Natural Science
基金 云南省科委应用基础项目(No.2006A0089M) 云南省教育厅科学研究基金项目(No.09Y0367)
关键词 周期解 极大极小方法 广义山路定理 条件(C) periodic solutions the minimax methods generalized mountain pass theorem condition (C)
  • 相关文献

参考文献11

  • 1Xian W,Chen S X,Kaimin T.On variational methods fora class of damped Vibration problems[J].Nonlinear Anal,2008,68:1432-1441. 被引量:1
  • 2Rabinowitz P H.On subharmonic solutions of Hamiltoniansystems[J].Comm Pure Appl Math,1980,33:609-633. 被引量:1
  • 3Mawhin J,Willem M.Critical point theory and Hamiltoniansystems[M].Berlin/New York:Springer-Verlag,1989. 被引量:1
  • 4Tao Z L,Tang C L.Periodic and subharmonic solutions ofsecond order Hamiltonian systems[J].J Math Amal Appi,2004,293:435-445. 被引量:1
  • 5Tang C L,Wu X P.Periodic solutions for a class of non-au-tonomous subquadratic second order Hamiltonltonian sys-tems[J].J Math Anal Appi,2002,275:870-882. 被引量:1
  • 6Tang C L.Periodic solutions for non-autonomous second or-der systems with sublinear nonlinearity[J].Proc AmerMath Soc,1998,126:3263-3270. 被引量:1
  • 7Tang C L,Wu X P.Periodic solutions for second order sys-tems with not uniformly coercive potential[J].J Math AnalAppl,2001,259:386-397. 被引量:1
  • 8Wu X P,Tang C L,Periodic solutions of class of non-auton-omous second order systems[J].J Math Anal Appl,1999,236:227-235. 被引量:1
  • 9张守贵.二维Laplace方程Neumann问题直接边界积分方程的Galerkin解法[J].重庆师范大学学报(自然科学版),2009,26(4):67-69. 被引量:1
  • 10李玉环,刘盈盈,穆春来.动态边界条件下一类强阻尼波动方程解的爆破[J].西南大学学报(自然科学版),2011,33(7):10-15. 被引量:3

二级参考文献18

  • 1张守贵,祝家麟,董海云.用双层位势求解Neumann外问题的Galerkin边界元解法[J].重庆大学学报(自然科学版),2006,29(3):103-106. 被引量:3
  • 2董海云,祝家麟,张守贵.二维Laplace方程Dirichlet问题直接边界积分方程的Galerkin解法[J].重庆大学学报(自然科学版),2006,29(4):122-125. 被引量:2
  • 3张守贵.一类变分问题的Galerkin解法[J].西华大学学报(自然科学版),2006,25(3):75-75. 被引量:2
  • 4Brebbia C A. The boundary element method for engineers[M].London : Pentech Press, 1978. 被引量:1
  • 5Of G,Steinbach O,Wendland W L. The fast muhipole method for the symmetric boundary integral formulation[J]. Ima Journal of Numerical Analysis,2006,26(2) :272-296. 被引量:1
  • 6TODOROVA G, VITILLARO E. Blow Up for Nonlinear Dissipative Wave Equations in Rn[J].J Math Anal Appl, 2005, 303(1): 242 -257. 被引量:1
  • 7LIU K, LIU Z. Exponential Decay of Energy of Vibrating Strings with Local Viscoelasticity[J].Z Angew Math Phys, 2002, 53(2): 265 -280. 被引量:1
  • 8CHEN S, LIU K, LIU Z. Spectrum and Stability for Elastic Systems with Global or Local Kelvin Voigt Damping [J]. SIAM J Appl Math, 1999, 59(2) : 651--668. 被引量:1
  • 9DORONIN G G, LARKIN N A. Global Solvability for the Quasilinear Damped Wave Equation with Nonlinear Second- Order Boundary Conditions[J]. Nonlinear Anal, 2002, 8: 1119--1134. 被引量:1
  • 10PELLICER M, MORALES J S. Spectral Analysis and Limit Behaviours in a Spring-Mass System[J]. Comm Pure Appl Anal, 2008, 7(3): 563--577. 被引量:1

共引文献2

同被引文献10

  • 1王少敏,杨培亮.一类二阶哈密顿系统的周期解[J].江西师范大学学报(自然科学版),2007,31(2):174-177. 被引量:2
  • 2Mawhin J. Some boundary value problems for Hartman- type perturbations of the ordinary vector p-Laplacian [ J ]. Nonlinear Anal ,2000,40( 1 ) :497-503. 被引量:1
  • 3Manasevich R, Mawhin J. The spectrum of p-Laplacian systems with various boundary conditions and applications [ J ]. Advance Differential Equations, 2000, 5 ( 10/11/ 12) :1289-1318. 被引量:1
  • 4Xu Bo, Tang Chunlei. Some existence results on periodic solutions of ordinary p-Laplacian systems [ J ]. J Math Anal App1,2007,333 ( 2 ) : 1228-1236. 被引量:1
  • 5Wang Zhiyong,Zhang Jihui. Periodic solutions of non-automous second order systems with p-Laplacian [ J ]. Electronic J Differential Equations ,2009 ( 17 ) : 1-12. 被引量:1
  • 6Zhang Li, Ge Weigao. Periodic solutions for a kind of p-Laplacian Hamiltonian systems [ J ]. Bull Korean Math Soc,2010,47 (2) :355-367. 被引量:1
  • 7Zhang Xingyong, Tang Xianhua. Periodic solutions for an ordinary p-Laplacian system [ J ]. Taiwan Residents Journal of Mathematics,2011,15 (3) : 1369-1396. 被引量:1
  • 8Willem M. Minimax theorems [ M ]. Boston: Birkhauser, 1996. 被引量:1
  • 9Ding Yanheng, Luan Shixia. Multiple solutions for a class of nonlinear Schrfidinger equations [ J ]. J Differential E- quations, 2004,207 (2) : 423-457. 被引量:1
  • 10Luan Shixia, Mao Anmin. Periodic solutions of a class of non-autonomous Hamihonian systems [ J ]. Nonlinear Anal,2005,61 (8) : 1413-1426. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部