期刊文献+

不定最小二乘问题的改进的不完全双曲Gram-Schmidt预处理算法

Preconditioners for indefinite least square problems based on incomplete hyperbolic modified Gram-Schmidt
下载PDF
导出
摘要 应用改进的不完全双曲Gram-Schmidt(IHMGS)方法预处理不定最小二乘问题的共轭梯度法(CGILS)、正交分解法(ILSQR)与广义的最小剩余法(GMRES)等迭代算法来求解大型稀疏的不定最小二乘问题.数值实验表明,IHMGS预处理方法可有效提高相应算法的迭代速度,且当矩阵的条件数比较大时,效果更加显著. Some iterative methods such as the conjugate gradient method for the indefinite least square problems(CGILSs),the sparse linear equations and indefinite least square problems(ILSQRs),and the generalized minimal residual(GMRES) method are preconditioned by the incomplete hyperbolic modified GramSchmidt (IHMGS) for the solution of the large and sparse indefinite least square problem.Numerical experiments show that the IHMGS preconditioner can greatly improve the iterative speed,especially for large-scale and ill-conditioned problems.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2012年第1期45-52,共8页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11001167) 上海市重点学科建设资助项目(J50101)
关键词 不定最小二乘(ILS)问题 改进的不完全双曲Gram-Schmidt(IHMGS) 最小二乘问题的共轭梯度法(CGILS) 最小二乘问题正交分解法(ILSQR) 广义的最小剩余法(GM—RES) 预处理 indefinite least square(ILS) problem incomplete hyperbolic modified Gram-Schmidt(IHMGS) conjugate gradient method for indefinite least square problem(CGILS) sparse linear equation and indefinite least square problem(ILSQR) generalized minimal residual(GMRES) preconditioner
  • 相关文献

参考文献7

  • 1Chandrasekaran S,Gu M,Sayed A H.A stable and efficient algorithm for the indefinite linear least-squares problem[J].SIAM J.Matrix Anal.Appl.,1998,20(2):354-362. 被引量:1
  • 2Liu Q H.Modified Gram-Schmidt-based methods for block downdating the Cholesky factorization [J].Journal Computational and Applied Mathematics,2011,235(8):1897 1905. 被引量:1
  • 3Liu Q H,Li X J.Preconditioned conjugate gradient methods for the solution of indefinite least square problems[J].Calcolo,2011,48(3):261-271. 被引量:1
  • 4Wang Q,Wei M.The ILSQR method for the solution of large indefinite least squares problem [R].Shanghai:East China Normal University,2009. 被引量:1
  • 5Hayami K,Yin J F,Tto T.GMRES methods for least squares problems[R].Tokyo,Japan: National Institute of Informations,2007. 被引量:1
  • 6Saad Y.Iterative Methods for Sparse Linear Systems[M].2ed.Philadelphia:SIAM,2003. 被引量:1
  • 7Liu Q H.Incomplete hyperbolic Gram-Schmidt-based preconditioners for the solution of large indefinite least squares problems[R].Shanghai:Shanghai University,2010. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部