期刊文献+

应用WUM和RBFN补值的协同过滤推荐研究

Research of collaborative filtering recommender method using WUM and RBFN to fill missing values
下载PDF
导出
摘要 协同过滤是目前推荐系统中最为成功的一种方法,但面临稀疏数据特征时存在冷启动、稀疏性、可扩展性等问题。提出利用Web数据挖掘(WUM)获取隐性数据对显性用户评价矩阵进行补值,应用径向基函数(RBFN)对补值后的评价矩阵进一步进行平滑处理,得到消除稀疏性后的完全评价矩阵,基于完全评价矩阵利用协同过滤技术对相似用户进行聚类并实施推荐。实验评价结果表明该方法与传统协同过滤推荐方法相比,无论在推荐精度还是推荐相关性上都更为有效。 Collaborative filtering is the most successful method in recommender system, but it has cold start, sparsity, scalability and other issues when faced with sparse data. Web Usage Mining(WUM) is proposed to obtain implicit data which can fill explicit user rat- ing matrix, and Radial Basis Function Network(RBFN) is used to smoothen filled rating matrix to get a complete rating matrix. Collab- orative filtering is used to classify similar users based on smoothed complete rating matrix and generate reconunendation. Experimental results show that compared with traditional collaborative filtering methods, the proposed method is more effective both in the accuracy or relevance of recommendations.
出处 《计算机工程与应用》 CSCD 2012年第9期22-26,共5页 Computer Engineering and Applications
基金 国家教育部青年基金项目(No.10YJC790182) 天津市教委项目 天津市高等学校人文社会科学研究项目(No.20112125)
关键词 推荐系统 协同过滤 网络数据挖掘 径向基函数 recommender system collaborative filtering Web Usage Mining radial basis function network
  • 相关文献

参考文献16

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:546
  • 2Pazzani M J.A framework for collaborative,content-based and demographic filtering[J].Artificial Intelligence Review,1999,13(5):393-408. 被引量:1
  • 3Sarwar B,Karypis G,Konstan J,et al.Application of dimension-ality reduction in recommender systems:a case study[C]//ACM WebKDD Workshop,New York,2000. 被引量:1
  • 4Sarwar B,Karypis G,Konstan J A,et al.Item-based collaborative filtering recommendation algorithms[C]//10th International World Wide Web Conference,2001:285-295. 被引量:1
  • 5Cheung K W,Kwok J T,Law M H,et al.Mining customer prod-uct ratings for personalized marketing[J].Decision Support Sys-tems,2003,35:231-243. 被引量:1
  • 6Huang Z,Chen H,Zeng D.Applying associative retrieval tech-niques to alleviate the sparsity problem in collaborative filtering[J].ACM Trans on Information Systems,2004,22(1):116-142. 被引量:1
  • 7Xue G,Lin C,Yang Q,et al.Scalable collaborative filtering us-ing cluster-based smoothing[C]//28th Annual International ACMSI-GIR Conference on Research and Development in Information Retrieval,Salvador,Brazil,2005:114-121. 被引量:1
  • 8Liu D R,Shih Y Y.Hybrid approaches to product recommenda-tion based on customer lifetime value and purchase preferences[J].Journal of Systems and Software,2005,77(2):181-191. 被引量:1
  • 9Liu D R,Shih Y Y.Integrating AHP and data mining for prod-uct recommendation based on customer lifetime value[J].Informa-tion&Management,2005,42:387-400. 被引量:1
  • 10Kim B M,Li Q,Park C S,et al.A new approach for combin-ing content-based and collaborative filters[J].Journal of Intelli-gent Information Systems,2006,27(1):79-91. 被引量:1

二级参考文献100

  • 1左雄辉,糜仲春.概念格在电子商务中的应用[J].科技进步与对策,2005,22(5):141-142. 被引量:3
  • 2张晓孪,王西锋.FCA中的概念语义相似度计算[J].现代图书情报技术,2007(3):51-54. 被引量:5
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. 被引量:1

共引文献553

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部