期刊文献+

频域空域二维稀疏SIMO高分辨雷达成像方法 被引量:2

Two Dimension Sparsity Imaging Method in Frequency and Space Domains for SIMO High-Resolution Radar
下载PDF
导出
摘要 利用频域稀疏的线性调频步进信号(FSCS)作为雷达发射信号,并结合空域稀疏的SIMO雷达阵列来构建二维稀疏的高分辨雷达成像模型。针对该稀疏模型,首先通过对低维数据简单补零处理,然后利用图像熵准则完成对运动目标速度的有效估计。在此基础上,结合压缩感知理论,构造有效的观测矩阵、稀疏变换矩阵以及重构算法,获得目标高分辨距离像(HRRP),进一步提出基于保相性的频域空域二维稀疏SIMO高分辨雷达成像方法。该方法可以大幅减少FSCS脉冲串的子脉冲个数,大幅减少SIMO高分辨雷达接收天线阵元个数,并获得高质量的HRRP和目标二维像。仿真实验验证了本文方法的有效性和鲁棒性。 Combined with sparse SIMO radar array in space domain,the two dimensional sparsity model for radar imaging with high resolution is established in this paper with frequency-stepped chirp signal(FSCS).First,a velocity estimation method for moving targets is introduced for this model based on image entropy criteria,and the accurate velocity estimation is implemented by simple zero-padding for low dimensional data.Second,in combination of the Compressed Sensing(CS) theory,the effective measurement matrix,the sparsity transform matrix and the reconstruction algorithm are designed to obtain the high-resolution range profile(HRRP),then a phase remain character based new imaging method is proposed for SIMO high-resolution sparse radar by two dimensional sparsity processing in the frequency and the space domains.The model can reduce not only the number of sub-pulses in FSCS burst,but also reduce the number of receivers of SIMO high-resolution radar,in the meanwhile,the high quality HRRP and two dimensional images of targets can be achieved.Effectiveness and robustness of the method are proved by the simulation results.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第3期358-366,共9页 Journal of Astronautics
基金 国家重点基础研究发展计划(973计划)项目(2010CB731905)
关键词 SIMO高分辨雷达 线性调频步进信号 压缩感知 稀疏性 运动速度估计 保相性 SIMO high-resolution radar Frequency-stepped chirp signal Compressed sensing Sparsity character Velocity estimation Phase remain character
  • 相关文献

参考文献15

二级参考文献210

共引文献826

同被引文献34

  • 1黄琼,屈乐乐,吴秉横,方广有.压缩感知在超宽带雷达成像中的应用[J].电波科学学报,2010,25(1):77-82. 被引量:25
  • 2Zhou Y F, Patrick C Y, Henry L. Tracking the direction-of- arrival of multiple moving targets by passive arrays: algorithm [ J]. IEEE Transactions on Signal Processing, 1999, 47 (10) : 2655 - 2666. 被引量:1
  • 3Ryu M, Toyohisa T, Akio H, et al. A DBF self-beam steering array antenna for mobile satellite applications using beaming- space maximal-ratio combination [ J ]. IEEE Transactions on Vehicular Technology, 1999, 48 (3) : 665 - 675. 被引量:1
  • 4James H G. High-frequency direction finding in space [ J ]. Review of Scientific Instruments, 2003, 74 (7) : 3478 - 3486. 被引量:1
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52 ( 2 ) : 489 - 509. 被引量:1
  • 6Dmitry M, Mujdat C, Alan S W. A sparse signal reconstruction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Processing, 2005, 53 (8) : 3010 -3022. 被引量:1
  • 7Bilik I. Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3) : 1754 -1769. 被引量:1
  • 8Yu Y, Petropulu A P, Poor H V. MIMO radar using compressive sampling [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4( 1 ) : 146 - 163. 被引量:1
  • 9Belfiori F, Anitori L, Rossum W V, et al. Digital beam forming and compressive sensing based DOA estimation in MIMO arrays [C]. The 8th European Radar Conference, Manchester, UK, October 12 - 14, 2011. 被引量:1
  • 10Kim L O, Ye J. Compressive music: revisiting the link between compressive sensing and array signal processing [J]. IEEE Transactions on Information Theory, 2012, 58 (1) : 278 -301. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部