期刊文献+

自适应差分进化算法及其在参数估计中的应用 被引量:9

Adaptive Differential Evolution Algorithm and Its Application in Parameter Estimation
下载PDF
导出
摘要 为解决动力学参数估计的问题,提出一种控制参数自适应和策略自适应的差分进化算法(DE-CPASA)。在该算法中,采用差分进化对优化问题进行寻优,控制参数以正态分布的方式实现自适应,通过对适应度函数值的评价,实现变异策略的自适应。测试仿真结果表明,DE-CPASA算法具有较高的求解精度和较快的收敛速度。将DE-CPASA算法应用于Hg氧化动力学参数估计,可得到较好的优化结果。 In order to solve problem of parameter estimation,an Differential Evolution algorithm with Control Parameter Adaptation and Strategy Adaptation(DE-CPASA) is introduced.In DE-CPASA,differential evolution operator is used to search the optimization results of problems,and Gaussian distribution is employed to implement the adaptive control parameters.The strategy adaptation is achieved by evaluation of value of fitness function.Simulation test results show that DE-CPASA can obtain a higher precision solution and has fast convergence.DE-CPASA is employed to estimate the kinetic parameters of Hg oxidation,and a good optimization result is obtained.
出处 《计算机工程》 CAS CSCD 2012年第5期202-204,207,共4页 Computer Engineering
基金 2010年度科技部国家重点新产品计划基金资助项目(2010GRC20113) 衢州学院中青年骨干教师基金资助项目
关键词 差分进化算法 自适应 参数估计 水银氧化 策略自适应 变异因子 differential evolution algorithm adaptive parameter estimation Hg oxidation strategy adaptation mutation factor
  • 相关文献

参考文献10

二级参考文献27

  • 1王湘中,喻寿益.适用于高维优化问题的改进进化策略[J].控制理论与应用,2006,23(1):148-151. 被引量:18
  • 2黄永青,陆青,梁昌勇,杨善林,郝国生.交互式多智能体进化算法及其应用[J].系统仿真学报,2006,18(7):2030-2032. 被引量:9
  • 3Kukkonen S,Lampinen J.GDE3:The Third Evolution Step of Generalized Differential Evolution[C]//Proc.of IEEE Congress on Evolutionary Computation.Edinburgh,UK:IEEE Press,2005:443-450. 被引量:1
  • 4Sierra M R,Coello C C A.A Study of Fitness Inheritance and Approximation Techniques for Multi-objective Particle Swarm Optimization[C]//Proc.of Congress on Evolutionary Computatipn.Edinburgh,UK:IEEE Press,2005:65-72. 被引量:1
  • 5Deb K,Goldberg D E.An Investigation of Niche and Species Formation in Genetic Function Optimization[C]//Proc.of the 3rd International Conference on Genetic Algorithms.San Mateo,California,USA:Morgan Kaufmann Publishers,1989:42-50. 被引量:1
  • 6Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multi objective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. 被引量:1
  • 7Zhang-Qingfu,Zhou Aimin,Jin Yaochu.RM-MEDA:A Regula rity Model Based Multiobjective Estimation of Distribution Algorithm[J].IEEE Transactions on Evolutionary Computation,2008,12(l):41-63. 被引量:1
  • 8Deb K,Sinha A,Kukkonen S.Multi-objective Test Problems,Linkages,and Evolutionary Methodologies[C]//Proc.of Genetic and Evolutionary Computation Conference.Seattle,USA:ACM Press,2006:1141-1148. 被引量:1
  • 9Li Hui,Zhang Qingfu.A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable LinkageslC]//Proc.of PPSN'06.Reykjavik,Iceland:Springer,2006:583-592. 被引量:1
  • 10Brest J, Greiner S, Bokovi B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE Trans on Evolutionary Computation, 2006, 10(6): 646-657. 被引量:1

共引文献20

同被引文献93

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部