期刊文献+

一种用于目标跟踪的改进粒子滤波算法 被引量:4

Improved Particle Filtering Algorithm for Target Tracking
下载PDF
导出
摘要 为解决目标跟踪中粒子滤波算法的估计精度、粒子退化问题,提出一种改进的粒子滤波算法。在粒子滤波的基础上,利用UKF生成粒子滤波的建议分布,以改善滤波效果,在无味粒子滤波的基础上,融合典型的MCMC抽样算法,减少传统算法未考虑当前量测对状态的估计作用所带来的影响,增加采样粒子多样化。将该算法应用于具有非线性、非高斯特点的目标跟踪问题中,仿真结果表明,与普通的粒子滤波算法相比,其跟踪精度和滤波效果有较大提高。 As the problems of estimation accuracy and particles degradation exist in the Particle Filtering(PF) algorithm,an improved PF algorithm is proposed.This algorithm which is based on PF uses the Unscented Kalman Filtering(UKF) to generate the proposal distribution so as to improve the filtering effect.It synchronizes the standard Markov Chain Monte Carlo(MCMC) sampling method and the unscented PF,which can reduce the effect that the traditional PF does not consider the current measurement,and makes the particles more diversification.Simulation results demonstrate that the algorithm has more significant advantages in tracking accuracy and filtering effect than other traditional PF algorithms.
出处 《计算机工程》 CAS CSCD 2012年第5期176-178,182,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61071014) 空军工程大学电讯工程学院科研创新基金资助项目(DYCX1002)
关键词 粒子滤波 目标跟踪 非线性滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 马尔可夫链-蒙特卡洛 Particle Filtering(PF) target tracking nonlinear filtering Extended Kalman Filtering(EKF) Unscented Kalman filtering(UKF) Markov chain Monte Carlo(MCMC)
  • 相关文献

参考文献8

二级参考文献88

  • 1宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 2汤琦,黄建国,杨旭东,冯西安.基于粒子滤波的被动多基站跟踪算法(英文)[J].宇航学报,2007,28(2):375-379. 被引量:1
  • 3Steven M.统计信号处理基础-估计与检测理论[M].罗鹏飞,译.北京:电子工业出版社,2006. 被引量:4
  • 4Arulampalam M S. A Tutorial on Particle Filters for Online Nonlinear/Non-gaussian Bayesian Tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 5Musso C, Oudjane N, Le Gland F. Sequential Monte Carlo methods in practice. New York: Springer-Verlag, 2002. 被引量:1
  • 6Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear and non-gaussian bayesian state estimation. IEE Proceedings-F, 1993, 140(2): 107~113. 被引量:1
  • 7Arulampalarn M, Maskell S, Gordon N, et al. A tutorial on particle filters for online onlinear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Processing, 2002, 50(2): 174~189. 被引量:1
  • 8Wan E A, Van der Merwe R. The unscented Kalman filter for nonlinear estimation. Proc. of Symposium on Adaptive Systems for Signal Processing, Communication and Control, Canada, 2000. 被引量:1
  • 9Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197~208. 被引量:1
  • 10Tanizaki H, Mariano R S. Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration. Journal of applied econometrics, 1994,9(2): 163~ 179. 被引量:1

共引文献409

同被引文献53

  • 1陈爱华,朱明,王艳华,薛陈.融合梯度特征的灰度目标跟踪[J].微电子学与计算机,2009,26(2):69-71. 被引量:4
  • 2荣思远,穆荣军,崔乃刚.EKF容错滤波方法在磁测自主导航中的应用研究[J].电子学报,2006,34(12):2268-2271. 被引量:9
  • 3AKYILDII I F, SU W, SANKARASUBRAMANIAM Y,et al. Wireless sensor network : a survey [ J ]. Computer Network, 2002,38 ( 4 ) :393-442. 被引量:1
  • 4ZHAO Feng, LIU Jie, LIU Juan, et al. Collaborative signal and infor- mation processing : an information directed approach [ J ]. Proceeding of the IEEE,2003,91(8) :1199-1209. 被引量:1
  • 5CHU M, HAUSSECKER H,ZHAO Feng. Scalable information-driven sensor querying and routing for Ad hoe heterogeneous sensor networks [J]. High Perform Computer Application,2002,16(3) :293-313. 被引量:1
  • 6CHEN Wei-peng,HOU J C,SHA Lui. Dynamic clustering for acoustic target tracking in wireless sensor networks[ J ]. IEEE Trans on Mo- bile Computing,2004,3(3 ) :258-271. 被引量:1
  • 7LIU J Y,XIAO W D,XIE L H,et al. Energy-efficient distributed a- daptive multisensor scheduling for the target tracking in wireless sen- sor network [ J]. IEEE Trans on instrumentation and measure- ment,2009,58(6) : 1886-1896. 被引量:1
  • 8ZHAO F, SHIN J, REICH J. Information-driven dynamic sensor col- laboration [ J ]. IEEE Signal Process,2002,19 ( 2 ) :61- 72. 被引量:1
  • 9HINTZ K J. A measure of the information gain attributable to cueing [J]. IEEE Trans on Systems, Man, and Cybernetics,1991,21 (2) :434-442. 被引量:1
  • 10ZHANG W S, CAO Guo-hong. DCTC:dynamic convoy tree-based collaboration for target tracking in sensor networks [ J]. IEEE Trans on Wireless Communica-tions,2004,3(5 ) :1689-1701. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部