期刊文献+

燃料电池纳米催化剂的稳定化 被引量:4

Stabilization of Nanocatalysts in Fuel Cells
原文传递
导出
摘要 低温燃料电池是理想的移动式电源,它所采用的电催化剂主要为Pt基贵金属纳米催化剂。提高纳米催化剂在电池内部环境中的稳定性、抑制其活性衰减,对于延长低温燃料电池的使用寿命和节约成本具有十分重要的意义。本文从三个方面综述了近年来在低温燃料电池纳米催化剂稳定化方面的研究进展。首先,通过载体效应实现催化剂的稳定化,包括碳载体的石墨化、碳载体的掺杂、表面功能化及其他载体的采用等。其次,通过空间效应实现催化剂的稳定化,包括催化剂粒子表面覆盖、催化剂粒子微孔嵌入、催化剂表面杂多酸单层自组装及聚合物电解质空间阻隔等。再其次,通过协同效应实现催化剂的稳定化,包括提升金属粒子的氧化电位、强化组分间的相互作用等。最后,对低温燃料电池纳米催化剂稳定化的发展前景进行了展望。 Low temperature fuel cells are considered to be promising portable power sources. Pt based noble metal nanocatalysts are widely used as electrocatalysts in low temperature fuel cells. The electrochemical stability of nanocatalysts is of significance for long-term operations of fuel cells. Unfortunately, Pt based nanoeatalysts are unstable in fuel cells and tend to lose their activities gradually during long-term discharge processes. The activity losses of nanocatalysts are normally caused by nanoparticle agglomeration, metal dissolution, poisoning, support corrosion, etc. In order to extend the lifetime of fuel cells and save costs, the stability of nanocatalysts under internal environments of fuel cells should be improved. Recently, studies regarding the stabilization of Pt based nanocatalysts attracted much attention and various methods were developed to prevent the degradation of nanocatalysts. In this paper, recent research works about the stabilization of nanocatalysts in low temperature fuel cells are reviewed. Firstly, nanocatalysts are stabilized by support modifications, which include the graphitization of carbon supports, the doping of carbon supports, the surface functionalization of carbon supports and the use of other supports. Secondly, nanocatalysts are stabilized by steric effects, which are related to the surface covering of catalyst nanoparticles, the micro-pore enveloping of catalyst particles, the monolayer self-assembly of polyoxometallate on the catalyst surface and the steric obstruction of catalyst nanoparticles by polymer electrolytes. Thirdly, nanoeatalysts are stabilized by synergetic effects, such as the elevation of metal oxidation potentials and the enhancement of the interaction between catalyst components. Finally, an outlook of the future development of the stabilization of nanocatalysts in low temperature fuel cells is provided.
作者 陈维民
出处 《化学进展》 SCIE CAS CSCD 北大核心 2012年第2期246-252,共7页 Progress in Chemistry
基金 辽宁省教育厅高校科研计划项目(No.2009B154)资助
关键词 燃料电池 电催化剂 纳米粒子 稳定化 fuel cells electrocatalysts nanoparticles stabilization
  • 相关文献

参考文献70

  • 1Carrette L, Friedrich K A, Stimmlng U. ChemPhysChem, 2000,1(4): 162-193. 被引量:1
  • 2衣宝廉(YiBL).燃料电池--原理、技术、应用.北京:化学工业出版社(Beijing:Chem.IndPress),2003.160-382. 被引量:1
  • 3Arico AS, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1 (2): 133-161. 被引量:1
  • 4Lazarus,R. S. toward better research on stress and coping. American Psychologist, 2000,55: 665-673 被引量:2
  • 5Petrii 0 A. J. Solid State Electr. , 2008,12(5): 609-642. 被引量:1
  • 6Matheny, K. B., Aycock, D. W., Pugh, J. L., Curletle, W. L., & Silva-Cannella, K. A. Stress coping: A qualitative and quantitative synthesis with implications for treatment. Counseling Psychologist,1986,14:499-549 被引量:2
  • 7Sherer M, Maddux J E. The Self-efficacy Scale: Construction and Validation. Psychological Reports,1982,51:663-671 被引量:2
  • 8Tang L, Han B, Persson K, Friesen C, He T, Sieradzki K, Ceder G. J. Am. Chem. Soc. , 2010, 132(2): 596-600. 被引量:1
  • 9邵玉艳,尹鸽平,王家钧,高云智.Pt/碳纳米管电极的电化学稳定性[J].催化学报,2006,27(3):281-284. 被引量:5
  • 10Shao Y, Kou R, Wang J, Viswanathan V V, Kwak J H, Liu J, Wang Y, Lin Y. J. Power Sources, 2008, 185 ( 1 ) : 280-286. 被引量:1

二级参考文献91

共引文献10

同被引文献43

  • 1Chung C G, Kim L, Sung Y W, et al. Degradation mechanism of electrocatalyst during long-term opera- tion of PEMFC [J] Int. J. Hydrogen Energy,2009, 34(21 ) :8974 - 8981. 被引量:1
  • 2Shi J J,Yang G H, Zhu J J. Sonoelectrochemical fab- rication of PDDA-RGO-PdPt nanocomposites as elec- trocatalyst for DAFCs [J]. J. Mater. Chem. ,2011, 21 (20) :7343 -7349. 被引量:1
  • 3Zhang S, Wang H, Zhang N, et al. Role of Pt-pyridinicnitrogen sites in methanol oxidation on Pt/polypyrrole- carbon black Catalyst [J]. J. Power Sources, 2012, 197:44 - 49. 被引量:1
  • 4Liao C S,Liao C T,Tso C Y. Microwave-polyol syn- thesis and electrocatalytic performance of Pt/grapheme nanocomposites [J]. Mater. Chem. Phys. ,2011,130 ( 1 - 2) :270 - 274. 被引量:1
  • 5A. K. Geim,K. S. Novoselov. The rise of grapheme [J]. Nature materials,2007,6(3) :183 -191. 被引量:1
  • 6Yang S D, Shen C M, Lu X J. Preparation and electro- chemistry of graphene nanosheets-multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation [ J ]. Electrochimi- ca. Acta,2012 ,62 :242 - 249. 被引量:1
  • 7Bo X J, Guo L P. Simple synthesis of macroporous carbon - graphene composites and their use as a sup- port for Pt electrocatalysts [J]. Electrochimica. Acta, 2013,90:283 - 290. 被引量:1
  • 8Zhang M M, Xie J M, Sun Q, et al. In situ synthesis of palladium nanoparficle on functionalized graphene sheets at improved performance for ethanol oxidation in alkaline media [ J ]. Electrochimica. Acta, 2013, 111:855 -861. 被引量:1
  • 9Liang Q S, Zhang L, Cai M L, et al. Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation [ J ]. Electro- chimica. Acta,2013 ,111:275 - 283. 被引量:1
  • 10Cha H C, Chen C Y, Shiu J Y. Investigation on the durability of direct methanol fuel cells [J]. Journal of Power Sources, 2009,192(2):451-456. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部