期刊文献+

离散小波特征提取及人工神经网络分类法的傅里叶变换红外光谱法识别鳞毛蕨科3种植物 被引量:5

Recognition Among Three Kinds of Pteridophyte Plants Based on Fourier Transform Infrared-Discrete Wavelet Feature Extraction and Artificial Neural Network Classification Method
下载PDF
导出
摘要 利用水平衰减全反射-傅里叶变换红外光谱法测定了3种药用鳞毛蕨科植物贯众、阔鳞鳞毛蕨和变异鳞毛蕨根部的FT-IR。运用基于离散小波多分辨率分析法对FT-IR吸收较为相似的3种药用蕨类植物根的FT-IR进行特征提取。选择第4、5分解层数的特征向量,进行人工神经网络(Artificial neural network,ANN)训练;再用训练出来的网络对不同产地的3种药用蕨类植物根所得FT-IR小波提取的特征向量进行分类。通过对240个不同样本的预测,说明能够采用基于FT-IR-离散小波特征提取及人工神经网络分类法对同科3种药用蕨类植物根的FT-IR进行识别。 Fourier transform infrared(FT-IR) and horizontal attenuated total reflectance(HATR) techniques were used to obtain the FT-IR of three kinds of pteridophyte plants(the root of Cyrtomium fortunei J.Sm,Dryopteris championii(Bench) C.Chr.apud Ching and Dryopteris varia(L.) O.Ktze.).The similar features of FT-IR among the root of Cyrtomium fortunei J.Sm,Dryopteris championii(Bench) C.Chr.apud Ching and Dryopteris varia(L.) O.Ktze.were extracted by discrete wavelet transform.The scale 4 and 5 were used to extract the feature vectors,which were used to train the artificial neural network(ANN).The trained neural network was used to classify the root of Cyrtomium fortunei J.Sm,Dryopteris championii(Bench) C.Chr.apud Ching and Dryopteris varia(L.) O.Ktze.,which were collected from different places.According to 240 prediction samples,we could effectively identify the root of Cyrtomium fortunei J.Sm,Dryopteris championii(Bench) C.Chr.apud Ching and Dryopteris varia(L.) O.Ktze.by FT-IR with discrete wavelet feature extraction and artificial neural network classification.
出处 《分析化学》 SCIE CAS CSCD 北大核心 2012年第3期371-375,共5页 Chinese Journal of Analytical Chemistry
关键词 水平衰减全反射傅里叶变换红外光谱 离散小波特征提取 人工神经网络 鳞毛蕨科植物 识别分析 Horizontal attenuated total reflectance-Fourier transform infrared spectroscopy Discrete wavelet feature extraction Artificial neural network Dryopteridaceae plants Identification analysis
  • 相关文献

参考文献11

二级参考文献91

共引文献95

同被引文献52

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部