期刊文献+

基于信用机制的网络用户管理方法研究

Study of network user management based on credit model
下载PDF
导出
摘要 网络用户管理是网络管理的重点也是难点,为了进一步提高网络管理的稳定性和可靠性,在分析网络用户上网行为的基础上,提出基于信用机制的网络用户管理方法。以金融领域较为成熟的信用模型对网络用户行为进行信用评估,利用信用值对网络用户进行管理。实验结果表明,利用信用模型的网络管理方法,减轻了网络管理员工作负担,并且提高了网络的稳定性和网络用户管理的有效性,该方法具有良好的鲁棒性和较强的适应能力,为网络管理提供一种新思路。 How to manage the behavior of net user is very important and hard problem for network management area. In order to improve the stability and reliability, after analyzing the action of net user, we proposed a new method based on credit scoring mode is proposed. Financial credit scoring model in network management is employed to evaluate the credit of net user and using this credit scoring for controlling and managing the behavior them. The experimental result shows this method can effectively re- lieve the network administrator's work burden, improve the static of network and efficiency of net user management. The method reform the robustness and adaptation of network, and finally a new direction of network management is provided.
作者 郭延锋 孙娜
出处 《计算机工程与设计》 CSCD 北大核心 2012年第3期1156-1159,共4页 Computer Engineering and Design
关键词 人工神经网 支持向量机 信用模型 网络管理 网格优化 artificial neural network support vector machines credit scoring model network management grid research opti-mization method
  • 相关文献

参考文献1

二级参考文献12

  • 1Ratsch G. Benchmarks data sets [ Online]. http://ida. first. fraunhofer. de/projects/bench/benchmarks.htm, 1999. 被引量:1
  • 2Takuya I, Shigeo A. Fuzzy support vector machine for pattern classification [ C ]. Proceeding of International Joint Conference on Neural Networks, Washington, D. C,2001, 1449-1454. 被引量:1
  • 3Vapnik V N. The Nature of Statistical Learning Theory[ M ]. New York: Springer, 2000,123-170. 被引量:1
  • 4Xu P, Chan A K. An efficient algorithm on multi-class support vector machine model selection [ C ]. Procee-dings of the International Joint Conference on Neural Net-works 2003. Portland, IEEE, 2003: 3229-3232. 被引量:1
  • 5Chapelle O, Vapnik V N, Bousquet O, et al. Choosing multiple parameters for support vector machines [ J ]. Machine Learning,2002,46( 1 ) :131-159. 被引量:1
  • 6Keerthi S S. Efficient tuning of SVM hyper parameters using radius/margin bound and iterative algorithms [ J ]. IEEE Trans. Neural Networks, 2002,13 (5) : 1225-1229. 被引量:1
  • 7Musicant D R, Kumar V, Ozgur A. Optimizing F-measure with support vector machines [ C ]. In the Sixteenth International Florida Artificial Intelligence Research Society Conference, St. Augustine, Florida, USA, AAAI Press,2003: 356-360. 被引量:1
  • 8Eitrich T, Lang B. Efficient optimization of support vector machine learning parameters for unbalanced datasets [ J ]. Journal of computational and applied mathematics, 2006, 196(2):425-436. 被引量:1
  • 9Morik K, Brockhausen P, Joachims T. Combining sta-tistical learning with a knowledge-based approach-a case study in intensive care monitoring [ C ]. In 16th Pro ceedings of the International Conference on Machine Learning. San Mateo, Canada: Morgan Kaufman Publishers, 1999, 268- 277. 被引量:1
  • 10Bo L F, Wang L, Jiao L C. Multiple parameter selection for LS-SVM using smooth leave-one-out error[ J]. Lecture notes in computer science. Berlin : Springer, 2005,851-856. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部