期刊文献+

基于重尾噪声分布特性的多分类人脸识别方法 被引量:7

Multi-classification Recognition Method Applied to Facial Image Based on Distribution Characteristic of Heavy-tailed Noise
下载PDF
导出
摘要 针对传统人脸识别方法不能有效地适应重尾噪声下的人脸图像的拖尾情况,该文提出具有良好抗重尾噪声能力的t分布下的多分类人脸识别方法。该算法通过调整t分布中的自由度参数v,使t分布能够很好地适应添加重尾噪声后的人脸图像的多种拖尾情况,提高人脸识别效果。ORL和Yale数据集上的实验结果,验证了所提出的算法的可行性和有效性。 Multi-classification method under t distribution is proposed in order to solve the problem of the traditional face classification methods failing to settle tailing situation with heavy-tailed noise.By adjusting the degree of freedom parameter v,t distribution will adapt to a variety of tailing conditions better after heavy-tailed noise is added in facial images,at the same time,the recognition results will be improved.The experimental results on ORL and Yale show the feasibility and the effectiveness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第3期523-528,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60773206 60704047) 国家863计划项目(2007AA1Z158)资助课题
关键词 人脸识别 多元T分布 多元Gaussian分布 核方法 重尾噪声 Face recognition Multivariate t distribution Multivariate Gaussian distribution Kernel method Heavy-tailed noise
  • 相关文献

参考文献16

  • 1Mukherjee A and Sengupta A.Estimating the probability density function of a nonstationary non-Gaussian noise[J].IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435. 被引量:1
  • 2Duda R O,Hart P E,and Stork D G.Pattern Classification[M].Wiley-Interscience Publication,2000:20-102. 被引量:1
  • 3Wang Zhi-min and Song Qing.Robust curve clustering based on a multivariate t-distribution model[J].IEEE Transactions on Neural Networks,2010,21(12):1976-1984. 被引量:1
  • 4王桥..数字图像处理[M].北京:科学出版社,2009:359.
  • 5楼宋江,张国印.零空间保局判别本征脸[J].电子与信息学报,2011,33(4):962-966. 被引量:4
  • 6John S T and Cristianini N.Kernel Methods for Pattern Analysis[M].Cambridge University Press,2004:289-325. 被引量:1
  • 7褚蕾蕾等编著..计算智能的数学基础[M].北京:科学出版社,2002:290.
  • 8刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:48
  • 9张全新,郑建军,牛振东,原达.贝叶斯分类器集成的增量学习方法[J].北京理工大学学报,2008,28(5):397-400. 被引量:3
  • 10Zhang Yan and Zhang Tao.Kernel-based Bayesian face recognition[C].2009Fifth International Conference on Natural Computation,Tianjin,China,2009,7:568-572. 被引量:1

二级参考文献53

  • 1李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117. 被引量:51
  • 2Can A,Shen H,Turner J N,Tanenbaum H L,Roysam B.Rapid automated tracing and feature extraction form retinal fundus images using direct exploratory algorithms.IEEE Transactions on Information Technology in Biomedicine,1999,3(2):125-138. 被引量:1
  • 3Lalonde M,Gagnon L,Boucher M.C.Non-recursive paired tracking for vessel extraction form retinal images//Proceedings of the Confefence on Vision Interface.Montr6al,Canada,2000:61-68. 被引量:1
  • 4Tolias A,Panas S M.A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering.IEEE Transactions on Medical Imaging,1998,17(2):263-273. 被引量:1
  • 5Chanhuri S,Chatterjee S,Katz N,Nelson M,Goldbaum M.Detection of blood vessels in retinal images using two-dimensional matched filters.IEEE Transactions on Medical Imaging,1989,8(3):263-269. 被引量:1
  • 6Gang L,Chutatape O,Krishnan S M.Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter.1EEE Transactions on Biomedical Engineering,2002,49(2):168-172. 被引量:1
  • 7Hoover A,Kouznetsova V,Goldbaum M.Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response.IEEE Transactions on Medical Imaging,2000,19(3):203-210. 被引量:1
  • 8Lowell J,Hunter A,Steel D,Basu A,Ryder R,Kennedy R.Measurement of retinal vessel widths from fundus images based on 2-D modeling.IEEE Transactions on Medical Imaging,2004,23(10):1196-1204. 被引量:1
  • 9Zana F,Klein J C.Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation.IEEE Transactions on Image Processing,2001,10(7):1010-1019. 被引量:1
  • 10Jiang X,Mojon D.Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(1),131-137. 被引量:1

共引文献59

同被引文献45

  • 1黄勇,王建国,黄顺吉.一种SAR图像的自动匹配算法及实现[J].电子与信息学报,2005,27(1):6-9. 被引量:7
  • 2薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 3谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:8
  • 4Kim S,Kang M.Multiple-region seg-mentation without super- vision by adaptive global maximum clustering[J].IEEE Trans- actions on Image Processing,2012,21(4): 1600-1612. 被引量:1
  • 5Goncalves H,Goncalves J A,Corte Real L.HAIRS:a method for automatic image registration through histo-gram-based image segmentation[J].Transactions on Image Processing,2011, 20( 3 ) : 776-789. 被引量:1
  • 6Bors A,Pitas G l.Optical flow estimation and moving object segmentation based on median radial basis function network[J]. IEEE Transactions on Image Processing, 1998,7(5 ) : 693-702. 被引量:1
  • 7Mclachlan G J.Peel D.Finite mixture models[M].New York: Wiley, 2000. 被引量:1
  • 8Ji Z, Xia Y, Sun Q, et al.Fuzzy local Gaussian mixture model for brain MR image segmentation[J].IEEE Transactions on Information Technology in Biomedicine,2012,16(3) :339-347. Singh R, Pal B C, Jabr R A.Statistical representation of dis- tribution system loads using gaussion. 被引量:1
  • 9mixture model[J]. IEEE Trans on Power Systems,2010,25(1) :29-37. 被引量:1
  • 10Nguyen T M, Wu Q M.Gaussian-mixture-model-based spatial neighborhood relation-ships for pixel labeling problem[J]. IEEE Transactions on Systems Man and Cybernetics: Part B Cybernetics, 2012,42 ( 1 ) : 193-202. 被引量:1

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部