期刊文献+

用于电刺激的植入式铂黑微电极(英文) 被引量:2

Implantable Pt-Black Coated Microelectrode for Electrical Stimulation
下载PDF
导出
摘要 传统的植入式电刺激微电极表面积小,电极/组织界面阻抗高,并且电荷存储容量(CSC)小,这些都会增加植入式系统的功耗并影响电刺激效果.提出了一种在电极点电镀铂黑的方法来增加微电极的有效面积(ESA).通过在超声波浴下使用脉冲电流电镀的方法,可以极大地增加微电极的ESA,降低界面阻抗并增加CSC和电荷注入容量.铂黑微电极的几何特性和电学特性分别由扫描电子显微镜(SEM)和电化学分析仪测定,并与未镀铂黑的电极特性进行了对比,对铂黑镀层的机械稳定性也做了相应的测试.实验结果表明,铂黑镀层的纳米结构使铂黑电极相比普通铂电极界面阻抗降低了1/16,CSC扩大13倍.在5 min的室温超声波衰减实验中,阴极电荷存储容量(CSCC)仅减小20%. Conventional implantable electrical stimulation microelectrodes have small surface area, high electrode-tissue interface impedance and low charge storage capacity ( CSC ), which will increase power consumption and hinder stimulation effect. In this paper, a method was presented to increase the effective surface area(ESA) of microelectrode by coating Pt-black on the electrode sites. The method combines with electroplating Pt-black by pulse current under ultrasonic bath, which can significantly increase the ESA, decrease the interface impedance, and increase the CSC and charge-injection capacity. Moreover, the geometrical properties of Pt-black coated microelectrodes were demonstrated by using a scanning elec- tron microscope(SEM) and the electrical properties were measured by an electrochemical analyzer com- pared with conventional microelectrodes without coatings. The mechanical stability of Pt-black coating was also tested. Experimental results show that approximately 16 times lower interface impedance and 13 times higher CSC were achieved by this nanostructured microelectrode. Cathodal charge storage capacity ( CSCc ) decreased only by 20% after an ultrasonic bath at room temperature for 5 min.
出处 《纳米技术与精密工程》 EI CAS CSCD 2012年第2期103-107,共5页 Nanotechnology and Precision Engineering
基金 supported by the National Natural Science Foundation of China(60876082) the Science and Technology De-partment of Shanghai(0852nm06600) the Program for New Cen-tury Excellent Talents in University(2009) the"Shu Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(08SG13) Aviation Science Foundation(2008ZE57019)~~
关键词 生物医学工程 派瑞林 微电极 植入式 铂黑 bio-medical engineering Parylene microelectrode implantable Pt-black
  • 相关文献

参考文献16

  • 1Cogan S F. Neural stimulation and recording electrodes [ J ]. Annual Review of Biomedical Engineering, 2008, 10 : 275- 309. 被引量:1
  • 2Meyer R D, Cogan S F, Nguyen T H, et al. Electrodeposited iridium oxide for neural stimulation and recording electrodes [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001, 9( 1 ) :2-11. 被引量:1
  • 3Zhou H B, Li G, Sun X N, et al. Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces[ J]. Journal of Microelectromechanical Systems, 2009, 18 ( 1 ) : 88-96. 被引量:1
  • 4Merrill D R, Bikson M, Jefferys J G R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols[J]. Journal of Neuroscience Methods, 2005, 141 (2) : 171-198. 被引量:1
  • 5Bauerdick S, Burkhardt C, Kern D P, et al. Substrate integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication [ J ]. Biomed Microdevices, 2003, 5(2) :93-99. 被引量:1
  • 6Hung A, Zhou D, Greenberg R, et al. Micromachined electrodes for high density neural stimulation systems [ C ]// 15th IEEE International Conference on Micro Electro Mechanical Systems. Las Vegas, NV, USA , 2002: 56-59. 被引量:1
  • 7Paik S J, Park Y, Cho D D. Roughened polysilicon for low impedance microelectrodes in neural probes [ J ]. Journal of Micromechanics and Microengineering, 2003, 13 ( 3 ) : 373- 379. 被引量:1
  • 8Cui X Y, Lee V A, Raphael Y, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends [ J ]. Journal of Biomedical Materials Research, 2001, 56(2) :261-272. 被引量:1
  • 9Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling[J]. Nano Letters , 2005, 5(6) :1107-1110. 被引量:1
  • 10Nguyen-Vu T D B, Chen H, Cassell A M, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3D neural electrical interface [ J ]. IEEE Transactions on Biomedical Engineering, 2007, 54 (6) : 1121-1128. 被引量:1

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部