期刊文献+

基于异构计算的简单行走模型的吸引区域研究 被引量:3

A study of basin of attraction of the simplest walking model based on heterogeneous computation
原文传递
导出
摘要 被动行走机器人由于结构简单、能量利用率高而倍受青睐,但其很容易跌倒,因此准确把握最终步态与吸引区域成了关键.由于面对非光滑系统,大规模数值计算很难避免,为此本文先提出基于CPU+GPU异构平台的Poincare映射算法.该算法可发挥最新平台计算潜力,比传统CPU上算法快上百倍.得益于此,本文针对双足被动行走的最基本模型,大规模地选取样点进行计算,不仅清晰地得出吸引区域的形状轮廓和细节特征,揭示了其内在分形结构,还得到系统吸引集和吸引区域随倾角k的变化关系,发现了新的稳定三周期步态和倍周期分岔混沌现象,并研究了吸引区域. Passive dynamic walking becomes an important development for walking robots due to its simple structure and high energy efficiency,but it often falls.The key to this problem is to ascertain its stable gaits and basins of attraction.In order to handle the discontinuity,massive numerical computation is unavoidable.In this paper,we first propose an algorithm to compute Poincare maps in heterogeneous platforms with CPU and GPU,which can take the best performance of the newest heterogeneous platforms and improve the computing speed by more than a hundred times.With this algorithm,we study the simplest walking model by sampling massive points from the state space.We obtain high resolution images of the basin of attraction,and reveal its fractal structure.By computing the relation between the stable gaits and their basins and by varying the slop k,we find a new three-period stable gait and a period-doubling route to chaos,and we also study the new gait and its basin.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第4期14-21,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61104150 10972082) 重庆市科委项目(批准号:cstcjjA40044) 华中科技大学自主创新基金(批准号:011906)资助的课题~~
关键词 POINCARE映射 被动行走 双足机器人 混沌 Poincare map passive dynamic walking bipeds chaos
  • 相关文献

参考文献3

二级参考文献35

共引文献19

同被引文献43

  • 1A Pikovsky, et al. Synchronization: a universal concept in nonlinear science[M]. Cambridge university press, 2003. 被引量:1
  • 2Z N6da, et al. The sound of many hands clapping - Tumultuous applause can transform itself into waves of synchronized clapping [J]. Nature, 2000,403 (6772) : 849 - 850. 被引量:1
  • 3S H Strogatz, et al. Theoretical mechanics: Crowd synchrony on the Millennium Bridge[J]. Nature, 2005,438(7064) :43 -44. 被引量:1
  • 4D Gonze, N Markadieu, A Goldbeter. Selection of in - phase or out - of - phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations [ J ]. Chaos: An In- terdisciplinary Journal of Nonlinear Science, 2008,18 (3) : 037127 - 037127 - 12. 被引量:1
  • 5I Osorio, et al. Epilepsy : The Intersection of Neurosciences, Biol- ogy, Mathematics, Engineering and Physics [ M ]. CRC Press, 2011. 被引量:1
  • 6I Z Kiss, Y Zhai, J L Hudson. Emerging coherence in a population of chemical oscillators[J]. Science, 2002,296(5573) : 1676 - 1678. 被引量:1
  • 7M C Cross, P C l-Iohenberg. Pattern formation outside of equilibri- una[J]. Reviews of Modem Physics, 1993,65(3) : 851. 被引量:1
  • 8Y Kuramoto. Self - entrainment of a population of coupled non - linear oscillators [ C 1. International symposium on mathematical problems in theoretical physics : Springer, 1975:420 - 422. 被引量:1
  • 9M Nixon, et al. Synchronized cluster formation in coupled laser networks [ J ]. Physical Review Letters, 2011,106 ( 22 ) : 223901. 被引量:1
  • 10M Bennett, K Wiesenfeld. Averaged equations for distributed Jo- sephson junction arrays [ J ]. Physica D : Nonlinear Phenomena, 2004,192(3) :196 -214. 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部