期刊文献+

基于概率模型的量子元胞自动机加法器容错性能研究 被引量:3

The fault-tolerance study of QCA adder based on probability model
原文传递
导出
摘要 采用概率转移矩阵方法和电路分割理论建立了两种结构的量子元胞自动机(QCA)加法器的容错性模型,深入分析了各组成元件对加法器的整体容错性能的影响.指出元件在较低的正确概率时,传输线对整体正确概率影响较小,而当元件正确概率较高时,传输线的正确概率对整体正确概率的影响急剧增大,并且在整个参数变化范围内反相器始终是影响整体正确概率的主要元件.采用Frobenius范数对两种同一功能不同结构的QCA加法器的整体容错性能进行了比较,发现由5输入择多逻辑门构成的QCA加法器的整体容错性能优良.这对于目前QCA加法器的容错性设计以及今后大规模QCA电路的容错性设计具有重要意义. The probability models of 2 different quantum cellular automaton (QCA) adders are based on the theory of probabilistic transfer matrix and circuit partition. The effect of individual component on the overall fault-tolerance is fully analyzed at the same level. The simulation shows that the effect of the wire is minor when the success probability is low, while the overall fault-tolerance rises sharply once the success probability is high. And the inverter is considered to be a major factor that affects the overall fault-tolerance in the variation range of parameter. Frobenbius norm of the overall error probabilistic transfer matrix is employed to study the fault-tolerance difference. The result shows that the overall fault-tolerance of QCA adder consisting of 5-input majority is superior to the other. Such fault-tolerance analyses should be used for a better characterization of QCA circuit design and fault-tolerance improvement.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第5期8-14,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61172043) 陕西省自然科学基础研究计划重点项目(批准号:2011JZ015) 陕西省电子信息系统综合集成重点实验室基金(批准号:201115Y15)资助的课题~~
关键词 概率转移矩阵 加法器 容错性 FROBENIUS范数 probabilistic transfer matrix, adder, fault-tolerance, Frobenius norm
  • 相关文献

参考文献15

  • 1Lent C S,Tougaw P D,Porod W,Bernstein G H 1993 Nanotechnology 4 49. 被引量:1
  • 2Tougaw P D,Lent C S 1994 Appl.Phys.75 1818. 被引量:1
  • 3Azghadi M R,Kavehei O,Navi K 2007 J.Appl.Sci.7 3460. 被引量:1
  • 4Navi K,Farazkish R,Sayedsalehi S,Azghadi M R 2010 Microelectron. J.41 820. 被引量:1
  • 5Zhang R M,Walus K,Wang W,Jullien G A 2004 IEEE Trans. Nanotechnol.3 443. 被引量:1
  • 6Cho H,Swartzlander E E 2007 IEEE Symposium on Computer Arithmetic Montpellier,France,June 25-27,2007 p7. 被引量:1
  • 7夏银水,裘科名.基于量子细胞自动机的数值比较器设计[J].电子与信息学报,2009,31(6):1517-1520. 被引量:17
  • 8Tahoori M B,Momenzadeh M,Huang J,Lombardi F 2004 Proceedings of the 22nd IEEE VLSI Test Symposium 2004 Boston, April 25-29,2004 p291. 被引量:1
  • 9Dysart T J,Kogge P M 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems 2008 p72. 被引量:1
  • 10Wei T Q,Wu K J,Karri R Orailoglu A 2005 IEEE 2005 p1 192. 被引量:1

二级参考文献9

  • 1王森,蔡理,郭律.基于量子细胞自动机的全加器实现[J].固体电子学研究与进展,2005,25(2):148-151. 被引量:10
  • 2Lent C S, Tougaw P D, and Porod W. Bistable saturation in coupled quantum dots for quantum cellular automata[J]. Applied Physics Letters, 1993, 62(7): 714-716. 被引量:1
  • 3Cho H and Swartzlander E E. Adder designs and analyses for quantum-dot cellular automata[J]. IEEE Trans. on Nanotechnology, 2007, 6(3): 374-383. 被引量:1
  • 4Choi M and Choi M. Scalability of globally asynchronous QCA (quantum-dot cellular automata) adder design[J]. Journal of Electronic Testing, 2008, 24(1-3): 313-320. 被引量:1
  • 5Heumpil C and Swartzlander E E. Serial parallel multiplier design in quantum-dot cellular automata[C]. IEEE Symposium on Computer Arithmetic, Montpellier, France, Jun. 25-27, 2007: 7-15. 被引量:1
  • 6Niemier M T and Kogge P M. Logic in wire: using quantum dots to implement a microprocessor[C]. Proceedings of Ninth Great Lakes Symposium on VLSI, Ann Arbor, MI, USA, Mar.4-6, 1999: 118-121. 被引量:1
  • 7Lent C S and Tougaw P D. Lines of interacting quantum-dot cells: A binary wire[J]. Journal of Applied Physics, 1993, 74(10): 6227-6233. 被引量:1
  • 8Kim K, Wu K J, and Karri R. Quantum-dot cellular automata design guideline[J]. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2006 E89-A(6): 1607-1641. 被引量:1
  • 9Walus K, Dysart T J, and Jullien G A, et al.. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata[J]. IEEE Trans. on Nanoteehnology, 2004, 3(1): 26-31. 被引量:1

共引文献16

同被引文献48

  • 1LENT C S, TOUGAW P D, POROD W, et al. Quantum cel lular automata [J]. Nanotechnology, 1993, 4 (1): 49- 57. 被引量:1
  • 2TOUGAW P D, LENT S. Logical devices implemented using quantum cellular automata [J]. Appl Phys, 1994, 75 (3): 1818- 1825. 被引量:1
  • 3KARTHIGAI S, LAKSHMI, ATHISHA G. Design and analysis of adders using nanotechnology based quantum-dot cellular automa- ta [J]. Journal of Computer Science, 2011, 7 (7) I 1072- 1079. 被引量:1
  • 4NAVI K, FARAZKISH R, SAYEDSALEHI S, et al. A new quantum-dot cellular automata full-adder [J]. Microelectronics Journal, 2010, 41 (12): 820-826. 被引量:1
  • 5AZGHADI M R, KAVEHEI O, NAVI K. A novel design for quantum-dot cellular automata cells and full adders [EB/OL]. (2012 - 04 - 11) [2012 - 10 - 07]. http://arxiv, org/abs/arXiv. 被引量:1
  • 6NIEMIER M, RODRIGUES A, KOGGE P. A potentially im- plementable FPGA for quantum dot cellular automata [EB/ OL]. (2002 - 03 - 10) E2012- 10- 071. http://www, cs. cmu-edu/- phoenix/nscl. 被引量:1
  • 7TOUGAW D, MEMBER S. Programmable logic implemented using quantum-dot cellular automata [J]. IEEE Transactions on Nanotechnology, 2012, 11 (4): 739-745. 被引量:1
  • 8TIMOTHY L, ERIC P. A QCA implementation of a configu- table logic block for an FPGA [C] // Proceedings of the 3ra International Con{erence on Reeonfigurable Computing and FPGAs. San Luis Potosi, Mexico, 2006: 132- 141. 被引量:1
  • 9MOEIN K, NADOOSHAN S R. A novel modular decoder im- plementation in quantum-dot cellular automata (QCA) [C] // PrQceedings of the Internaional Conference on Nanoscience, Technology and Socetal Implications. Bhubaneswar, India, 2011, 714- 718. 被引量:1
  • 10LENT C S, TOUGAW P D. A device architecture for com- puting with quantum dots[J]. Proceedings of the IEEE, 1997, 85 (4):541-557. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部