期刊文献+

非均匀采样信号小波分析误差控制方法 被引量:1

Wavelet analysis error controlling method for non-uniform sampling signal
下载PDF
导出
摘要 标准的小波分析方法中,信号的低频能量和高频能量不能人为控制,因此在利用低频分量近似原信号时,在一些陡峭变化区域会存在较大偏差。针对这一问题,本文首先分析了小波分解各子带能量与采样频率的关系,发现增加采样频率可以降低高频能量,并给出了部分证明。以此为基础,提出了非均匀采样信号小波分析误差控制方法,考虑到小波分解的高频能量和低频能量存在互补关系,算法利用高频系数作为低频表示误差的判断指标,对误差超限位置处的数据增如采样,然后对修正后的数据进行低频分解;该方法使低频能量可根据误差门限人为进行调整。重构是分解的逆过程,可完全无误的恢复原始信号。实验表明算法对小波分析低频表示误差具有很好的控制能力。 In the standard wavelet analysis methods(SWAM),the energy distributed in low band and high band can not be controlled.Large distortion may be produced in some steep changed local region when using low band to approximate the original signal.To solve this problem,the relation between energy distribution in each band and sampbng frequency is analyzed first.It is found that the high-band components' energy can be decreased by increasing sampling frequency.And the partial proof is given.Based on this idea,a wavelet analysis method with error control(WAMEC) is presented for non-uniform sampling signal.Taking into account the complementary relation of energy distributed in low-band and high-band,the algorithm uses high-band coefficients as indicator of low-band reconstruction error.The up-sampling is preceded at these positions in which the error exceeds the threshold.At last,low-band components are calculated using modified data.The energy in low-band components can be adjusted by error threshold.The reconstruction is the inversion procedure of decomposition and the original signal can be recovered lossless.The experimental results show WAMEC has well ability to control local error for low-band reconstruction.
出处 《信号处理》 CSCD 北大核心 2012年第1期118-123,共6页 Journal of Signal Processing
基金 国防预研基金
关键词 小波分析 误差控制 非均匀采样 wavelet analysis error control non-uniform sampling
  • 相关文献

参考文献15

  • 1Shapiro J M.Embedded image coding using zerotrees of wavelets coefficients[J].IEEE Transactions on Signal Processing,1993,41(12):3445-3462. 被引量:1
  • 2Said A,Pearlman W.A new,fast and efficient image co- dec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits & Systems for Video Technology, 1996,16(6):243-250. 被引量:1
  • 3Taubman D.High performance scalable image compression with EBCOT[J].IEEE Transactions on Image Processing, 2000,9(7):1158-1170. 被引量:1
  • 4Villasenor J D,Belzer B,Liao J.Filter evaluation and selection in wavelet image compression[C].Proceedings of Data Compression Conference,Snowbird,Utah,1994, 351-360. 被引量:1
  • 5Calderbank A R,Daubechies L,Sedldens W,et al.Wavelet transforms tbat map integers to integers[J].Applied Computational Harmonic Analysis,1998,5(3):332-369. 被引量:1
  • 6Ramaswamy V N,Namuduriu K R,Ranganathan N.Performance analysis of wavelets in embedded zerotree-based lossless image coding schemes[J].IEEE Transactions on Signal Processing,1999,47(3):884-888. 被引量:1
  • 7郑晶晶,方金云,韩承德.基于JPEG2000无损压缩的DEM网络渐进传输方法[J].武汉大学学报(信息科学版),2009,34(4):395-399. 被引量:2
  • 8Xiong Z,Ramchandram K,Orchard M T.Space-frequency quantization for wavelet image coding[J].IEEE Transactions on Image Processing,1997,6(5):77-693. 被引量:1
  • 9Wu B F,Su C Y.Low computational complexity enhanced zerotree coding for wavelet-based image compression[J]. Signal Processing:Image Communication,2000,16(11): 401-411. 被引量:1
  • 10张立强,杨崇俊.多进制小波和二叉树实现大规模地形的实时漫游[J].计算机辅助设计与图形学学报,2005,17(3):467-472. 被引量:13

二级参考文献40

  • 1WU Fan.Scale-Dependent Representations of Relief Based on Wavelet Analysis[J].Geo-Spatial Information Science,2003,6(1):66-69. 被引量:4
  • 2张立强,杨崇俊,刘冬林.基于M进制小波的视点相关多分辨率地形模型的简化[J].系统仿真学报,2004,16(9):1970-1973. 被引量:9
  • 3陈仁喜,赵忠明,王殷行.基于整型小波变换的DEM数据压缩[J].武汉大学学报(信息科学版),2006,31(4):344-347. 被引量:3
  • 4Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J]. The Canadian Cartographer, 1973, 10 (2): 112-122 被引量:1
  • 5Kolesnikov A, Akimov A. Distortion constrained compression of vector maps [C] //Proceedings on Applied computing, Seoul, of the 2007 ACM Symposium 2007:8-12 被引量:1
  • 6Kolesnikov A, Franti P. A fast near optimal algorithm for approximation of polygonal curves [C] //Proceedings of Pattern Recognition, Quebec City, 2002:335-338 被引量:1
  • 7Kolesnikov A, Franti P. A fast near-optimal min polygonal approximation of digitized curves [C]//Proceedings of Automation, Control and Information Technology, Novosibirsk, 2002 : 418-422 被引量:1
  • 8Kolesnikov A, Franti P. Fast algorithm for multiple-objects rain-ε problem [C]//Proceedings of Image Processing, Barcelona, 2003, 1:221-224 被引量:1
  • 9Kolesnikov A, Franti P. Polygonal approximation of closed contours [C]//Proceedings of Image Analysis, Goteborg, 2003:778-785 被引量:1
  • 10Kolesnikov A, Franti P. Reduced search dynamic programming for approximation of polygonal curves [J]. Pattern Recognition Letters, 2003, 24(14): 2243-2254 被引量:1

共引文献34

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部