期刊文献+

针对FY2E影像的白天雾检测研究 被引量:6

Research on day fog detection based on FY2E image
下载PDF
导出
摘要 传统基于遥感的雾检测方法,主要利用极轨卫星遥感影像(如MODIS、AVHRR)建立雾检测模型,尽管极轨卫星影像的光谱信息丰富,但是其过境时间一般比较迟,MODIS为当地时间11点左右,AVHRR为当地时间14时左右,而且单颗极轨卫星的时间分辨率为一天左右,无法很好地满足雾检测的实际需要。针对静止卫星的雾检测研究还比较少,其主要思想是利用光谱差异进行雾检测。选择FY2E影像并结合面向对象思想开展白天雾检测研究,利用Streamer辐射传输模型针对云、雾、雪、地表对FY2E影像的5个波段进行模拟,构建雪检测指数(SDI)、雾检测指数(FDI)等6个雾检测特征参数;选择特征波段,利用Mean Shift分割方法完成FY2E影像的分割,基于雾检测特征参数构建雾检测区域特征参数;建立白天雾检测模型,选择案例数据进行实验,并利用地面站点实测数据进行精度评定。实验结果表明,提出的雾检测模型取得了很好的检测效果。 Traditional fog detection methods based on remote sensing mainly use polar-orbiting satellite images (such as MODIS and AVHRR) to establish fog detection model. Although the spectral information of polar-orbiting satellite is richer than geostationary satel- lite, the transit time is usually relatively late in the day(MODIS is about 11 o'clock and AVHRR is about 14 o'clock) and the time reso- lution of single polar-orbiting satellite is about one day which is unable to meet the requirements of operational fog detection. The fog detection research on stationary satellite is relatively little and the main idea is to use spectral differences to detect fog. This paper chooses FY2E image to research on day fog detection based on object-oriented approach. Streamer radiative transfer model is used to simulate the 5 bands of FY2E image for fog, cloud, ice and surface combined with measured data, six fog detection characteristic pa- rameters are established. Mean Shift algorithm is used to segment the FY2E image and regional characteristics are established based on fog detection characteristic parameters. The fog detection model is built and experimented on FY2E data. Experimental results show that the proposed fog detection in this paper achieves good results.
出处 《计算机工程与应用》 CSCD 2012年第8期4-7,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.40901208) 国家重点基础研究发展计划(No.2011CB302306)
关键词 FY2E STREAMER 面向对象 Mean SHIFT fog FY2E Streamer object-oriented Mean Shift
  • 相关文献

参考文献9

  • 1吴晓京.FY2C静止卫星资料大雾判识方法研究[C]//中国气象学会2007年年会,广州,2007. 被引量:1
  • 2Cermak J, Bendix J.Dynamical nighttime fog/low stratus detection based on meteosat SEVIRI data:a feasibility study[J].Pure and Applied Geophysics, 2007,164 (6/7) : 1179-1192. 被引量:1
  • 3文雄飞..陆地辐射雾遥感动态检测方法研究[D].武汉大学,2010:
  • 4Kneizys F X, Shettle E P, Abreu L W, et al.Users guide to LOWTRAN7[M].Massachusetts,USA:Air Force Geophysics Laboratory, 1988. 被引量:1
  • 5Matthew M W,Adler-Golden S M,Berk S M,et al.Status of atmospheric correction using a MODTRAN4-based algorithm[C]// SPIE Proceeding, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI,2000. 被引量:1
  • 6Key J R,Schweiger A J.Tools for atmospheric radiative transfer: Streamer and FluxNet[J].Computers & Geosciences, 1998,24 (5) : 443 -451. 被引量:1
  • 7Comaniciu D, Meer EMean shitS: a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5) :603-619. 被引量:1
  • 8Kidder S Q, Eis K E, Vonder-Haar T H.New GOES imager system products suitable for use on field-deployable systems[C]//Battlespace Atmospheric and Cloud Impacts on Military Operations Conference, 1998:452-459. 被引量:1
  • 9Bendix J, Cermak J, Thies B.New perspectives in remote sensing of fog and low stratus-TERRA/AQUA-MODIS and MSG[C]// Proceedings of the 3rd International Conference on Fog, Fog Collection and Dew,Cape Town,South Africa,2004. 被引量:1

同被引文献76

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部