期刊文献+

对称熵损失函数下两参数广义指数分布形状参数的Bayes估计 被引量:5

Bayesian Estimation for Shape Parameter of Generalized Exponential Distribution of Two Parameters under Symmetry Entropy Loss Function
下载PDF
导出
摘要 在对称熵损失函数下,讨论了两参数广义指数分布形状参数的Bayes估计和可容许估计,并给出了一类逆线性形式(cT+d)-1估计的可容许性和不可容许性的条件. Under symmetry entropy loss function, we discuss Bayesian estimation and admissibility estimation for shape parameter of generalized exponential distribution of two parameters. The conditions for admissibility and inadmissibility of estimation with the inverse linear form of (cT + d) ^-1 are given.
作者 王琪 李玮
出处 《重庆工商大学学报(自然科学版)》 2012年第2期1-4,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家青年科学基金项目(71001046)
关键词 BAYES估计 可容许性 对称熵损失函数 广义指数分布 Bayesian estimation admissibility symmetrydistributionentropy loss function generalized exponential
  • 相关文献

参考文献10

二级参考文献31

  • 1朱显海 鹿长余.线性模型中参数的线性估计的可容许性[J].数学年刊:A辑,1987,8(2):220-226. 被引量:3
  • 2韦博成.参数估计教程[M].北京:高等教育出版社,2006. 被引量:8
  • 3Gupta, R.D., Kundu, D. Generalized Exponential Distributions[J]. Australian and New Zealand Journal of Statistics, 1999, 41. 被引量:1
  • 4Gupta, R.D., Kundu, D. Generalized Exponential Distributions: Different Method of Estimations[J].Journal of Statistical Computation and Simulation,2001,69. 被引量:1
  • 5Gupta, R.D., Kundu, D. Exponentiated Exponential Distribution:An Alternative to Gamma or Weibull Distribution [J].Biometrical Journal,2001,43. 被引量:1
  • 6Gupta, R.D., Kundu, D. Discriminating between the Weibull and Generalized Exponential Distributions[J].Computational Statistics and Data Analysis, 2003,43. 被引量:1
  • 7Gupta, R.D., Kundu, D. Discriminating between Gamma and the Generalized Exponential Distributions [J].Journal of Statistical Computation and Simulation,2004,74. 被引量:1
  • 8Parsian A, Nematollahi N. Estimation of Scale Parameter under Entropy loss Funetion[J].Journal of Statistical Planning and Inference,1996,52. 被引量:1
  • 9周光亚,数理统计.2,1988年,79,173页 被引量:1
  • 10陈希孺,数理统计引论,1981年,159页 被引量:1

共引文献71

同被引文献37

  • 1柏跃迁.正态均值线性估计的可容许性[J].重庆工商大学学报(自然科学版),2007,24(5):445-447. 被引量:4
  • 2陈志强,韦程东,程艳琴.熵损失函数下Burr分布参数的Bayes估计[J].广西师范学院学报(自然科学版),2007,24(3):30-34. 被引量:18
  • 3Podder C K, Roy M K, Bhniyan K J, et al. Minimax estimation of the parameter of the Pareto distribution for quadratic and MLINEX loss functions[J]. Pak J Statist, 2004, 20(1): 137-149. 被引量:1
  • 4Gupta R D, Kundu D. Generalized Exponential Distributions [J]. Aus- tralian and New Zealand Journal of Statistics, 1999, 41. 被引量:1
  • 5Gupta R D, Kundu D. Generalized Exponential Distributions: Differ- ent Method of Estimation [J]. Journal of Statistical Computation and Simulation, 2001,69. 被引量:1
  • 6Podder C K, Roy M K,Bhniyan K J, et al.Minimax Estimation of the Parameter of the Pareto Distribution for Quadratic and MLINEX loss Functions[J].Pak J Statist, 2004, 20(1). 被引量:1
  • 7BURR I W. Cumulative Frequency Functions[ J] .Ann Math Statist, 1942( 13) :215-232. 被引量:1
  • 8SARTAWI H A,ABU-SALIH M S. Bayesian Prediction Bounds for the Burr Type X Model[ J] .Commun Statist Theory Methods, 1991,20(7) :2307-2330. 被引量:1
  • 9JAHEEN Z F. Bayesian Approach to Prediction with Outliers from the Burr Type Model[ J]. Microelectron Reliab, 1995 ,35( 1): 45-47. 被引量:1
  • 10JAHEEN Z F. Empirical Bayes Estimation of the Reliability and Failure Rate Functions of the Burr Type X Failure Rate Model [J].J Appl Statist Sci,1996,3(4) :281-288. 被引量:1

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部