期刊文献+

HilAnchor:Location Privacy Protection in the Presence of Users' Preferences 被引量:4

HilAnchor:Location Privacy Protection in the Presence of Users' Preferences
原文传递
导出
摘要 Location privacy receives considerable attentions in emerging location based services.Most current practices however either ignore users' preferences or incompletely fulfill privacy preferences.In this paper,we propose a privacy protection solution to allow users' preferences in the fundamental query of k nearest neighbors (kNN).Particularly,users are permitted to choose privacy preferences by specifying minimum inferred region.Via Hilbert curve based transformation,the additional workload from users' preferences is alleviated.Furthermore,this transformation reduces time-expensive region queries in 2-D space to range the ones in 1-D space.Therefore,the time efficiency,as well as communication efficiency,is greatly improved due to clustering properties of Hilbert curve.Further,details of choosing anchor points are theoretically elaborated.The empirical studies demonstrate that our implementation delivers both flexibility for users' preferences and scalability for time and communication costs. Location privacy receives considerable attentions in emerging location based services.Most current practices however either ignore users' preferences or incompletely fulfill privacy preferences.In this paper,we propose a privacy protection solution to allow users' preferences in the fundamental query of k nearest neighbors (kNN).Particularly,users are permitted to choose privacy preferences by specifying minimum inferred region.Via Hilbert curve based transformation,the additional workload from users' preferences is alleviated.Furthermore,this transformation reduces time-expensive region queries in 2-D space to range the ones in 1-D space.Therefore,the time efficiency,as well as communication efficiency,is greatly improved due to clustering properties of Hilbert curve.Further,details of choosing anchor points are theoretically elaborated.The empirical studies demonstrate that our implementation delivers both flexibility for users' preferences and scalability for time and communication costs.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第2期413-427,共15页 计算机科学技术学报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos. 61003057 and 60973023
关键词 location privacy kNN query minimum inferred region users' privacy preferences location privacy,kNN query,minimum inferred region,users' privacy preferences
  • 相关文献

参考文献20

  • 1Gruteser M, Schelle G, Jain A, Han R, Grunwald D. Privacyaware location sensor networks. In Proc. the 9th Workshop on Hot Topics in Operating Systems (HotOS 2003), Hawaii, USA, May 18-21, 2003, pp.163-167. 被引量:1
  • 2Beresford A R, Stajano F. Location privacy in pervasive computing. IEEE Pervasive Computing, 2003, 2(1): 46-55. 被引量:1
  • 3Ronssopoulos Nick R, Kelley S, Vincent F. Nearest neighbor queries. In Proc. the ACM SIGMOD International Conference on Management of Data (SIGMOD 1995), San Jose, California, USA, May 22-25, 1995, pp.71-79. 被引量:1
  • 4Xiao Z, Meng X F, Xu J L. Quality aware privacy protection for location-based services. In Proc. the 12th International Conference on Database Systems for Advanced Applications (DASFAA 2001), Bangkok, Thailand, April 9-12, 2007, pp.434-446. 被引量:1
  • 5Bettini C, Wang X S, Jajodia S. Protecting privacy against location-based personal identification. In Proc. the 2nd VLDB Workshop on Secure Data Management (SDM 2005), Trondheim, Norway, September 2-3, 2005, pp.185-199. 被引量:1
  • 6Mokbel M F, Chow C Y, Aref W G. The new Casper: Query processing for location services without compromising privacy. In Proc. the 32nd International Conference on Very Large Data Bases (VLDB 2006), Seoul, Korea, September 12-15,2006, pp.763-774. 被引量:1
  • 7Li P Y, Peng W C, Wang T W, Ku W S, Xu J, Hamilton J A. A cloaking algorithm based on spatial networks for location privacy. In Proc. IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC 2008), Taichung, Taiwan, China, June 11-13, 2008, pp.90-97. 被引量:1
  • 8Duckham M, Kulik L. A formal model of obfuscation and negotiation for location privacy. In Proc. the 3th International Conference on Pervasive Computing (Pervasive 2005), Munich, Germany, May 8-13, 2005, pp.152-170. 被引量:1
  • 9Kalnis P, Ghinita G, Mouratidis K, Papadias D. Preventing location-based identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng., 2007,19(12): 1719- 1733. 被引量:1
  • 10Ghinita G, Kalnis P, Skiadopoulos S. PRIVE: Anonymous location-based queries in distributed mobile systems. In Proc. the 16th International Conference on World Wide Web (WWW 2001), Banff, Alberta, Canada, May 8-12,2007, pp.371-380. 被引量:1

同被引文献53

  • 1HARRISON B, DEY A. What have you done with location-based services lately[J]. IEEE Pervasive Computing, 2009, 8(4): 66-70. 被引量:1
  • 2GRUTESER M, GRUNWALD D. Anonymous usage of location-based services through spatial and temporal cloaking[A]. Proceedings of the 1st International Conference on Mobile Systems, Applications and Ser- vices[C]. A Francisco, California, 2003.31-42. 被引量:1
  • 3BAMBA B, LIU L, PESTI P, et al. Supporting anonymous location queries in mobile environments with privacygrid[A]. Proceedings of the 17th International Conference on World Wide Web[C]. Beijing, China, 2008.237-246. 被引量:1
  • 4LIU F, HUA K A, CAI Y. Query l-diversity in location-based ser- vices[A]. Proceedings of the 10th International Conference on Mobile Data Managouent: Systems, Sarvices and Middlcwarc[C]. 2009. 436-442. 被引量:1
  • 5LEE B, OH J, YU H, et al. Protecting location privacy using location semantics[A]. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C]. 2011. 1289-1297. 被引量:1
  • 6KALNIS P, GHINITA G, MOURATIDIS K, et al. Preventing loca- tion-based identity inference in anonymous spatiat queries[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(12): 1719-1733. 被引量:1
  • 7PINGLEY A, YU W, ZHANG N, et al. A context-aware scheme for privacy-preserving location-based services[J]. Computer Networks,2012, 56(11): 2551-2568. 被引量:1
  • 8CHOW C, MOKBEL M F, LIU X. A peer to peer spatial cloaking algorithm for anonymous location based services[A]. Proceedings of the ACM Symposium on Advances in Geographic Information Sys- terns[C]. Arlington, VA, 2006.171 - 178. 被引量:1
  • 9HUH B, XU J L. Non-exposure location anonymity[A]. IEEE 25th International Conference on Data Engineering[C].2009.1120-1131. 被引量:1
  • 10HASHEM T, KULIK L. "Don't trust anyone": privacy protection for location-based services[J]. Pervasive and Mobile Computing, 2011, 7(I): 44-59. 被引量:1

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部