摘要
Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre-thermal annealing temperature, active layer thickness, and the P3HT : IC70BA weight ratios. For devices with a 188-nm-thick active layer of P3HT : ICToBA (1 : 1, w ' w) blend film and pre-thermal annealing at 150 ℃C for 10 rain, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.
Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre-thermal annealing temperature, active layer thickness, and the P3HT : IC70BA weight ratios. For devices with a 188-nm-thick active layer of P3HT : ICToBA (1 : 1, w ' w) blend film and pre-thermal annealing at 150 ℃C for 10 rain, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.
基金
This work was supported by the National Natural Science Foundation of China (Nos. 20821120293 and 50933003) and Chinese Academy of Sciences.