摘要
有限域GF(2n)上正形置换是一类应用最为广泛的置换,正形置换多项式是研究有限域上正形置换的一个有效方法,本文通过代数方法得到了有限域GF(2n)正形置换多项式系数的一个关系式,利用正形置换得到了GF(2n)的极大子群的个数与构造.这些为进一步研究正形置换提供了支撑.
The orthomorphism on finite field GF(2n) is a kind of permutations that is the most widely used in cross-cutting issue,and the orthomorphic polynomials over the finite field is an effective method to study it.This paper has obtained the coefficients relationship of the orthomorphisms over the GF(2n) by algebraic methods.In addition,this paper has attained the maximal subgroup structure and counting in the GF(2n).It is helpful to provide the theoretical support for the in-depth study of the nature of the orthomorphism.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2012年第1期81-85,共5页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学基金资助项目(60970115
91018008)
关键词
有限域
正形置换
极大子群
正形置换多项式
代数整数环
finite field
orthomorphisms
maximal subgroup
orthomorphic polynomials
domain of algebraic integer