期刊文献+

一种具有small world特性的ESN结构分析与设计 被引量:8

Analysis and design on structure of small world property ESN
原文传递
导出
摘要 针对回声状态网络(ESN)结构设计复杂、参数选择难度大的问题,提出一种具有small world特性的ESN(SWESN).首先采用神经元空间增长算法在平面区域生成small world拓扑网络;然后根据网络节点与基准点的Euclidean距离将网络节点进行重新排序,并将平面上的物理节点及其连接映射为SWESN的内部神经元连接矩阵,从而使动态神经元池具有small world特性.实验表明,SWESN动力学特性比常规ESN更为丰富,在鲁棒性、抗干扰能力等方面均优于常规的ESN. For the problems of complex structure design and hard parameters selection on echo state network(ESN) frame, this paper proposes a structure design method of dynamic neurons reservoir(DNR) with the small world structure(SWESN). Design method of SWESN is introduced in detail. Neurons space growth algorithm is used to generate network with small world topology structure on 2-D plane. Then the neurons are rearranged by Euclidean distance from network's nodes to the fiducial node, and the physical nodes of the plane region and their internal connections are mapped to the connection matrixes of ESN internal neurons. This design method makes the DNR have small world property. The simulation experiments show that, the proposed ESN can create more abundant dynamic behavior than conventional ESN, and both robustness and anti- interference ability of SWESN are better than that of conventional ESN.
出处 《控制与决策》 EI CSCD 北大核心 2012年第3期383-388,共6页 Control and Decision
基金 国家自然科学基金重点项目(61034008) 国家自然科学基金项目(60873043) 北京市自然科学基金项目(4092010) 教育部博士点基金项目(200800050004) 北京市属高等学校人才强教计划项目(PHR201006103)
关键词 回声状态网络 小世界 动态神经元池 动力学特性 echo state network small world dynamic neurons reservoir dynamic behavior
  • 相关文献

参考文献13

  • 1Herbert J. The echo state approach to analysing andtraining recurrent neural networks[R]. German NationalResearch Center for Information Technology, 2001, 12(8):1-43. 被引量:1
  • 2Mustafa C O, Xu D M, Principe J C. Analysis and design ofecho state networks[J]. Neural Computation, 2007, 19(1):111-138. 被引量:1
  • 3Herbert J. Harnessing nonlinearity: Predicting chaoticsystems and saving energy in wireless communication[J].Science, 2004, 204(5667): 78-80. 被引量:1
  • 4刘颖,赵珺,王伟,吴毅平,陈伟昌.基于数据的改进回声状态网络在高炉煤气发生量预测中的应用[J].自动化学报,2009,35(6):731-738. 被引量:33
  • 5Herbert J. Reservoir riddles: Suggestions for echo statenetwork research (extended abstract)[C]. Proc of Int JointConf on Neural Networks. Montreal, 2005: 1460-1461. 被引量:1
  • 6Xue Yan-bo, Yang Le, Simon Haykin. Decoupled echostate networks with lateral inhibition[J]. Neural Networks,2007, 20(3): 365-376. 被引量:1
  • 7Ozturk M C, Xu D, Principe J C. Analysis and design ofecho state networks[J]. Neural Computation, 2007, 19(1):111-138. 被引量:1
  • 8Pouget R, Terrence J S, Alexandre P. Spatialtransformations in the parietal cortex using basis functionsusing basis functions[J]. J of Cognitive Neuroscience,1997, 9(2): 222-237. 被引量:1
  • 9Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(4): 440-442. 被引量:1
  • 10Gail A C. Large-scale neural systems for vision andcognition[C]. Proc of Int Joint Conf on Neural Networks.Piscataway: IEEE Press, 2009: 14-19. 被引量:1

二级参考文献29

  • 1史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 2Jaeger H. Tutorial on Training Recurrent Neural Networks, Covering BPTT, RTRL, EKF and "Echo State Network"Approach, Technical Report GMD Report 159, German Na- tional Research Center for Information Technology, German, 2002 被引量:1
  • 3Jaeger H. Adaptive nonlinear system identification with echo state networks. Advances in Neural Information Processing Systems 15. Cambridge: The MIT Press, 2003. 593-600 被引量:1
  • 4Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667): 78-80 被引量:1
  • 5Kountouriotis P A, Obradovic D, Su L G, Mandic D P. Multi-step forecasting using echo state networks. In: Proceedings of the International Conference on Computer as a Tool. Belgrade, Serbia: IEEE, 2005. 1574-1577 被引量:1
  • 6Jaeger H. Reservoir riddles: suggestions for echo state network research. In: Proceedings of the International Joint Conference on Neural Networks. Washington D. C., USA: IEEE, 2005. 1460-1462 被引量:1
  • 7Prokhorov D. Echo state networks: appeal and challenges. In: Proceedings of the International Joint Conference on Neural Networks. Washington D. C., USA: IEEE, 2005. 1463-1466 被引量:1
  • 8Soltani S. On the use of the wavelet decomposition for time series prediction. Neurocomputing, 2002, 48(1-4): 267-277 被引量:1
  • 9Golub G H, van Loan C F. Matrix Computations. Baltimore: The Johns Hopkins University Press, 1983 被引量:1
  • 10Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q A. The empirical mode decomposition method and the Hilbert spectrum for nonstationary time series analysis. Proceedings of the Royal Society A, 1998, 454(1971): 903-995 被引量:1

共引文献76

同被引文献50

  • 1樊泽霞,郭绪强,王杰祥,任韶然,孙明波,闫方平.原油乳状液稳定性光学评价方法研究[J].中国石油大学学报(自然科学版),2007,31(4):130-133. 被引量:11
  • 2Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80. 被引量:1
  • 3Herbert J. The echo state approach to analysing and training recurrent neural networks[R]. Sankt Augustin: German National Research Center for Information Technology, 2001, 12(8): 1-43. 被引量:1
  • 4Li D, Han M, Wang J. Chaotic time series prediction based on a novel robust echo state network[J]. IEEE Trans on Neural Networks and Learning Systems, 2012, 23(5): 787-799. 被引量:1
  • 5Pan Y, Wang J. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks[J]. IEEE Trans on Industrial Electronics, 2012, 59(8): 3089-3101. 被引量:1
  • 6SkowronskiMD, Harris J G. Automatic speech recognition using a predictive echo state network classifier[J]. Neural Networks, 2007, 20(3): 414-423. 被引量:1
  • 7Chen Y, Hu J, Kasabov N, et al. NeuCubeRehab: A pilot study for EEG classification in rehabilitation practice based on spiking neural networks[J]. Springer Lecture Notes in Computer Science, 2013, 8228(1): 70-77. 被引量:1
  • 8Xue Y, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition[J]. Neural Networks, 2007, 20(3): 365-376. 被引量:1
  • 9Schmidhuber J, Wierstra D, Gagliolo M, et al. Training recurrent networks by evolino[J]. Neural Computation, 2007, 19(3): 757-779. 被引量:1
  • 10Fiers M A A, Van Vaerenbergh T, Wyffels F, et al. Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns[J]. IEEE Trans on Neural Networks and Learning Systems, 2014, 25(2): 344- 355. 被引量:1

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部