期刊文献+

改进的Mean-Shift遥感影像分割方法 被引量:6

Improved mean-shift segmentation approach for remote sensing images
下载PDF
导出
摘要 基于高斯核Mean-Shift(MS)算法因收敛速度慢难以满足遥感图像处理的实时应用要求,提出一种改进的MS算法应用于遥感图像分割。针对传统MS算法需多次人工试用来确定固定带宽的问题,给出几种类型遥感影像的空间带宽参考值,且不同波段影像用plug-in规则分别计算值域带宽。针对遥感影像数据量大、MS迭代计算时间长的不足,使用一些加速策略来加速收敛;由于采用MS算法检测出的模点数较多,采用基于全局模点融合来稳定遥感影像分割结果;可用于分割遥感影像的特征很多,模点检测时用灰度特征,全局模点融合时用纹理特征,这样充分利用了遥感影像多维特征且不降低计算速度。采用Quickbird影像进行分割试验,研究结果表明:本文算法自适应程度高,速度和精度也能满足应用要求,是一种稳健的自动分割方法。 Due to low convergence speed of Gauss kernel Mean-Shift,it couldn't satisfy real time application of remote sensing image processing,an improved mean-shift segmentation approach for remote sensing image was proposed.In order to overcome some defects of fixed bandwidths of classic Mean-Shift,referenced spatial bandwidths were given according to the spatial resolution of remote sensing images,and various hue range bandwidths of each band were calculated using plug-in rules.In order to solve the problem of spending much time in Mean-Shift iteration caused by the voluminous imagery data set,some accelerating strategies were proposed.As the number of mode detected by Mean-Shift algorithm were large,global based mode merging method was proposed to stabilize the segmentation result of remote sensing images.Multi-dimension features were used and calculation speed was advanced,color features were used in mode detection and texture features were used in mode merging.Segmentation experiments were processed with Quickbird satellite image.The results show that the presented method is adaptive,and its speed and precision can satisfy application,so it is a robust automatic segmentation algorithm.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期620-625,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金青年科学基金资助项目(40901171) 国家高技术研究发展计划("863"计划)重点资助项目(2009AA122004) 武汉大学测绘遥感信息工程国家重点实验室基金资助项目(09R03)
关键词 MEAN-SHIFT 遥感影像 分割 带宽 模点检测 模点融合 Mean-Shift remote sensing image segmentation bandwidth mode detection mode merging
  • 相关文献

参考文献13

  • 1HONG Yi-ping,YU Jian-qiang,ZHAO Dong-bin.Improvedmean shift segmentation approach for natural images[J].AppliedMathematics and Computation,2007,185(2):940 952. 被引量:1
  • 2van der Sande C J,de Jong S M,de Roo A P J.A segmentationand classification approach of IKONOS-2 imagery for landcover mapping to assist flood risk and flood damageassessment[J].International Journal of Applied EarthObservation and Geoinformation,2003,4:217 229. 被引量:1
  • 3杨朝云,陈光儒,吕嫦艳,马波.一种改进的高分辨率遥感影像分割方法及应用[J].电脑与信息技术,2010,18(4):45-48. 被引量:1
  • 4Comaniciu D,Meer P.Mean-Shift:A robust approach towardsfeature space analysis[J].IEEE Transaction on Pattern Analysisand Machine Intelligence,2002,24(5):603 619. 被引量:1
  • 5Comaniciu D,Ramesh V,Meer P.The variable bandwidth meanshift and data-driven scale selection[C]//Proceedings of EighthIEEE International Conference on Computer Vision.Vancouver,United States,2001:438 445. 被引量:1
  • 6王兆虎,刘芳,焦李成.一种基于视觉特性的遥感图像分割[J].计算机学报,2005,28(10):1686-1691. 被引量:10
  • 7Comaniciu D.An algorithm for data-driven bandwidthselection[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2003,25(2):281 288. 被引量:1
  • 8Comaniciu D,Ramesh V,Meer P.Real-time tracking ofnon-rigid objects using mean shift[C]//Proceedings of IEEEConference on Computer Vision and Pattern Recognition.HiltonHead Island,United States,2000:142 149. 被引量:1
  • 9Georgescu B,Shimshoni I,Meer P.Mean shift based clusteringin high dimensions:a texture classification example[C]//Proceedings of IEEE International Conference on ComputerVision.Nice,France,2003:456 463. 被引量:1
  • 10Carreira-Perpinan M A.Acceleration strategies for Gaussianmean—shift image segmentation[C]//Proceedings of the 2006IEEE Computer Society Conference on Computer Vision andPattern Recognition.New York:IEECS Press,2006:543 549. 被引量:1

二级参考文献5

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2NIMA. The Compendium of Controlled Extensions (CE) for the National Imagery Transmission Format (NIT1;) version 2.1 [EB/OL]. http: //164.214.2.51/nth/superceded/STDI-0002 v2J.PDF, 2000-11-16. 被引量:1
  • 3C.Vincent Tao, Yong Hu, A Comprehensive Study of the Rational Function Model for Photogrammetric Processing [J]. PE& RS, 2001,67 (12):1347-1357. 被引量:1
  • 4C.S. Fraser, G. Dial, Grodecki J."Sensor orientation via RPCs"[J], ISPRS, v60, n3, 182-194(2006). 被引量:1
  • 5H. Meng, Y.L. Liu, J.X Zhang, H. Gong, Positional accuracy in RPC point determinationbased on high-resolution imagery[C]. Geoinformatics 2007, Nanjing. SPIE,2007:675-679. 被引量:1

共引文献9

同被引文献58

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部