期刊文献+

一维正弦型函数光子晶体带隙结构研究 被引量:3

Investigation On One-dimensional Sin-function Photonic Crystals
下载PDF
导出
摘要 我们提出一种函数型光子晶体,其折射率是一个随空间位置周期性变化的函数.基于费马原理,我们得到了光在一维函数型光子晶体中的运动方程,并利用传输矩阵的方法推导出光在一维函数光子晶体的色散关系、发射率和透射率.通过理论模拟发现,介质的折射率、半周期厚度以及入射角对光子晶体带隙变化有重要的影响. We presented a new kind of function photonic crystals,which refractiv e index was a function of space position.Based on Fermat principle,we gave the motion equations of light in one-dimensional function photonic crystals.Using the transfer matrix theory,we gave the dispersion relation,band gap structure and transmissivity about the one-dimensional sin-function photonic crystals.By calculating,we found that the refractive index,the half period thickness and a ngle of incidence had important effects on the band gap of the function photonic Crystals.
出处 《吉林师范大学学报(自然科学版)》 2012年第1期34-37,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 吉林省教育厅项目(2006016)
关键词 光子晶体 折射率 传输矩阵 photonic crystals refractive index transfer matri x
  • 相关文献

参考文献10

  • 1E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[ J]. Phys. Rev. Lett. , 1987,58:2059 - 2062. 被引量:1
  • 2S. John. Strong localization of photons in certain disordered dielectric superlattices[ J]. Phys. Rev. Lett. , 1987,58:2486 - 2489. 被引量:1
  • 3K. Busch, S. John. Liquid-Crystal Photonic-Band-Gap Materials : The Tunable Electromagnetic Vacuum [ J ]. Phys. Rev. Lett. , 1999,83 : 967-970. 被引量:1
  • 4Yurii A. Vlasov, Martin O'Boyle, Hendrik F. Hamann, Sharee J. McNab Active control of slow light on a chip with photonic crystal waveguides [ J ]. Nature 2005,438:65 - 69. 被引量:1
  • 5J. B. Pendry, A. MacKinnon. Calculation of Photon Dispersion Relations [ J ]. Phys. Rev. Lett. , 1992,69 ( 19 ) :2772 - 2775. 被引量:1
  • 6Kenji Ishizaki ,Susumu Noda. Manipulation of photons at the surface of three-dimensional photonic crystals [J]. Nature,2009,460:367 - 370. 被引量:1
  • 7Y. Chassagneux, et al. , Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[ J ]. Nature,2009,457:174 - 178. 被引量:1
  • 8D. Torrent ,J. Sanchez-Dehesa. Acoustic metamaterials for new two-dimensional sonic devices [ J]. New. Jour. Phys. ,2007,9:323 - 335. 被引量:1
  • 9P. Russell. Photonic-crystal fibers [ J ]. Science,2003,299:358 - 362. 被引量:1
  • 10Xiang-Yao Wu, Bai-Jun Zhang, Jing-Hai Yang, et al. Function Photonic Crystals [ J ]. Physica E, 2011,43 : 1694 - 1700. 被引量:1

同被引文献24

  • 1刘晓静,李娜,张斯淇,王婧,巴诺,吴坤鹏,吴向尧,郭义庆.一维新型阶梯函数光子晶体透射特性[J].光子学报,2012,41(10):1193-1199. 被引量:3
  • 2王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展[J].中国激光,2006,33(1):57-66. 被引量:72
  • 3马科斯·玻恩,埃米尔·沃耳夫.光学原理[M].7版.北京:电子工业出版社,2005:49-54. 被引量:6
  • 4Yablonovitch E. Inhibited spontaneous emission in solid- state physics and electronics [ J ]. Physical review letters, 1987,58(20) :2059 - 2061. 被引量:1
  • 5John S. Strong localities of photons in certain disordered dielectric super lattices [J]. Phys Rev Lett, 1987, 58 (23) : 2486 - 2489. 被引量:1
  • 6Kocaman S, Aras M S, Hsieh P, et al. Zero phase delay in negative-refractive-index photonic crystal superlattices [ J]. Nature Photonics ,2011,5 (8) :499 - 505. 被引量:1
  • 7Rahimi H, Namdar A, Roshan Entezar S, et al. Photonic transmission spectra in one-dimensional fibonacci multi- layer structures containing single-negative metamaterials [ J]. Progress in Electromagnetics Research, 2010,102 : 15 - 30. 被引量:1
  • 8Zyryanov V Y, Myslivets S A, Gunyakov V A, et al. Mag- netic-field tunable defect modes in a photonic-crystaL/Liq- uid-crystal cell [ J ]. Optics express, 2010, 18 ( 2 ) : 1283 - 1288. 被引量:1
  • 9Wu C Y,Zou Y H,Timofeev I,et al. Tunable hi-function- al photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer[ J]. Optics Express, 2011,19 (8) :7349 - 7355. 被引量:1
  • 10Arkhipkin V G, Gunyakov V A, Myslivets S A, et al. Elec- tro-and magneto-optical switching of defect modes in one- dimensional photonic crystals [ J ]. Journal of Experimental and Theoretical Physics ,2011,112 (4) : 577 - 587. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部