期刊文献+

2-循环系数矩阵对称MSOR法收敛的充分必要条件 被引量:5

The necessary and sufficient conditions of the convergence of the symmetric MSOR for 2-cyclic coefficient matrices
下载PDF
导出
摘要 讨论了A为2-循环系数矩阵的线性方程组AX=b的对称MSOR迭代求解问题.在系数矩阵A为2-循环系数矩阵且相应的Jacobi迭代矩阵的特征值为实数或纯虚数时对称MSOR法收敛的充分必要条件,并举例说明所得结果的优点. The symmetric MSOR iterative method for solving linear systems of AX=b is discussed where A is a 2-cyclic coefficient matrices.The necessary and sufficient condition for the convergence of the symmetric MSOR method was given for solving the linear system AX=b with 2-cyclic coefficient matrices when the characteristics of the Jacobi iteration matrix is real number or purely imaginary.And the advantages of the results were illustrated by example.
出处 《纺织高校基础科学学报》 CAS 2011年第4期549-553,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(60671063)
关键词 Jacobi法 MSOR法 对称MSOR法 收敛 Jacobi method MSOR method symmtric MSOR method convergence
  • 相关文献

参考文献8

  • 1YOUNG D M. Iterative solution of large linear systems[M]. New York:Academic Press, 1971. 被引量:1
  • 2RICHARD S. Varge. Matrix iterative analysis[M].北京:科学出版社,2006. 被引量:1
  • 3MARTINS M M. A note on convergence of the MSOR method[J]. Linear Algebra Appl, 1990,141:223-226. 被引量:1
  • 4DERCEG D, MARTINS M M,TRIGO M E. On convergence of the MSOR method for some classes of matrices[J]. SI- AM J Matrix Anal Appl, 1993,14 : 122-131. 被引量:1
  • 5冯果忱等编..矩阵迭代分析导论[M].长春:吉林大学出版社,1991:177.
  • 6胡家赣著..线性代数方程组的迭代解法[M].北京:科学出版社,1991:207.
  • 7DARVISHI M T, HESSARI P. On convergence of the symmetric modified successive overrelaxation method for 2-cy- clic matrices[J]. Applied Mathematics and Computation, 2006,183 : 953-960. 被引量:1
  • 8DARVISHI M T,KHOSRO-Aghdam R. Symmetric successive overrelaxation methods for rank deficient linear system [J]. Appl Math Comput,2006,173(1) :404-420. 被引量:1

同被引文献23

  • 1宋永忠.块AOR迭代法的收敛性[J].应用数学,1993,6(1):39-45. 被引量:13
  • 2魏小梅,畅大为.相容次序矩阵SAOR方法收敛的充要条件[J].纺织高校基础科学学报,2006,19(3):201-204. 被引量:6
  • 3胡家赣.线性代数方程组的迭代解法[M].北京:科学出版社,1997.29. 被引量:18
  • 4YOUNG D M. Iterative solution of large linear systems[M]. New York: Academic Press, 1971. 被引量:1
  • 5BOUKAS L A,MIISSIRLIS N M. The parallel local modified SOR for nonsymmetric linear systems[J]. Int J Comput Math, 1998,68 : 153-174. 被引量:1
  • 6HADJIDIMOS A, YEYIOS A. Some recent results on the modified SOR theory[J]. Linear Algebra Appl, 1991,154/ 155/156 : 5-21. 被引量:1
  • 7HENCEG D,MARTINS M M,TRIGO M E. On the convergence of the MSOR methods for some classes of matries [J]. SIAM J Matrix Anal Appl, 1993,14 : 122-131. 被引量:1
  • 8DARVISHI M T, HESSARI P. On convergence of the symmetric modified successive overrelaxation method for 2-cy- clic matrices[J]. Applied Mathematics and Computation, 2006,183: 953-960. 被引量:1
  • 9TAYLOR P J. A generalization of systematic relaxation methods for consistently ordered matrices[J]. Numer Math, 1969,13 : 377-395. 被引量:1
  • 10YOUNG D M. Iterative solution of large linear systems[M]. New York: Academic Press, 1971. 被引量:1

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部