期刊文献+

基于文化算法的表面肌电信号特征选择 被引量:1

Feature selection for surface electromyography signal using cultural algorithm
下载PDF
导出
摘要 为了提高假肢控制系统肌电信号的分类准确率,提出一种新的基于文化算法的特征选择方法,通过该方法选择出最佳特征向量,然后用线性分类器检验其分类性能。利用表面差分电极从人体上肢四块肌肉采集四通道的肌电信号,对十个健康受试者进行八个动作的肌电信号模式分类实验,并同时用标准遗传算法来与文化算法作比较。实验结果表明,文化算法与遗传算法相比,特征维数更小,分类准确度更高。 To improve classification accuracy of the surface electromyography (sEMG)-based prosthesis, this paper proposed a new way to select feature based on cultural algorithm(CA) and used here. It tested its classification performance with linear discrimina analysis (LDA). The method used surface differential electrodes to acquire four EMG signals from human body' s upper limbs. Ten healthy subjects participated in the experiment of classification of eight hand motion' s sEMG signals. Test results show that the algorithm can get a good result of classification. Compared with the standard genetic algorithm ( GA), it has better search performance.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期910-912,共3页 Application Research of Computers
基金 江苏省自然科学基金资助项目(BK2009198)
关键词 表面肌电信号 文化算法 特征选择 遗传算法 模式识别 surface electromyography signal cultural algorithm feature selection genetic algorithm pattern recognition
  • 相关文献

参考文献10

  • 1许栋岳,李克勇.肌电信号的特征分析方法及其应用[J].现代生物医学进展,2010,10(13):2593-2596. 被引量:3
  • 2成娟,陈香,路知远,张旭,赵章琰.基于表面肌电信号的手指按键动作识别研究[J].生物医学工程学杂志,2011,28(2):352-356. 被引量:6
  • 3RITTENHOUSE D M, ABDULLAH H A, RUNCIMAN R J, et al. A neural network model for reconstructing EMG signals from eight shoul- der muscles: consequences for rehabilitation robotics and biofeedback [ J]. Journal of Biomechanics ,2006,39 ( 10 ) : 1924-1932. 被引量:1
  • 4REYNOLDS R, LIU Da-peng. Multi-objective cultural algorithms [C]//Proc of IEEE Congress on Evolutionary Computation. 2011: 1233-1241. 被引量:1
  • 5ALl M Z,SALHIEH A, SNANIEH R T A, et al. Boosting cultural al- gorithms with an incongruous layered social fabric influence function [ C ]//Proc of IEEE Congress on Evolutionary Computation. 2011: 1225-1232. 被引量:1
  • 6REYNOLDS R G, PENG Bin. Cultural algorithms:modeling of how cultures learn to solve problems[ C ]//Proc of the 16th IEEE Interna- tioanl Conference on Tools with Artificial Intelligence. 2004:166-172. 被引量:1
  • 7HU Xiao, WANG Zhi-zhong, REN Xiao-mei. Classification of surface EMG signal using relative wavelet packet energy [ J ]. Computer Methods and Programs in Biomedicine,2005,79 ( 3 ) : 189-195. 被引量:1
  • 8CHU J U, MOON I,LEE Y J,et al. A supervised feature-projection- based real-time EMG pattern recognition for muhifunction myoelectric hand control[ J ]. IEEE/ASME Trans on Mechatronies, 2007,12 (3) :282-290. 被引量:1
  • 9ENGLEHART K, HUDGINS B, PARKER P A. A wavelet-based continuous classification scheme for multifunction myoelectric control [J]. IEEE Trans on Biomedical Engineering ,2001,48 (3) :302- 310. 被引量:1
  • 10AJIBOYE A B, WEIR R F. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control [ J ]. IEEE Yrans on Neural Systems and Rehabilitation Engineering,2005, 13(3) :280-291. 被引量:1

二级参考文献45

共引文献7

同被引文献16

  • 1罗志增,杨广映.基于触觉和肌电信号的假手模糊控制方法研究[J].机器人,2006,28(2):224-228. 被引量:8
  • 2Pons J L. Wearable robots: Biomechatronic exoskeletons[M]. Hoboken, USA: Wiley, 2008. 被引量:1
  • 3Chu J U, Moon I, Lee Y J, et al. A supervised feature-projection- based real-time EMG pattern recognition for multifunction my- oelectric hand control[J]. IEEE/ASME Transactions on Mecha- tronics, 2007, 12(3): 282-290. 被引量:1
  • 4A1-Timemy A H, Bugmann G, Escudero J, et al. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3): 608-618. 被引量:1
  • 5Cavallaro E E, Rosen J, Perry J C, et al. Real-time myoproces- sors for a neural controlled powered exoskeleton arm[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2387- 2396. 被引量:1
  • 6Sankai Y. HAL: Hybrid assistive limb based on cybemics [M]//13th International Symposium on Robotics Research. Berlin, Germany: Springer, 2011: 25-34. 被引量:1
  • 7Fleischer C, Hommel G. A human-exoskeleton interface utiliz- ing electromyography[J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882. 被引量:1
  • 8Ahsan M R, Ibrahimy M I, Khalifa O O. EMG signal classifi- cation for human computer interaction: A review[J]. European Journal of Scientific Research, 2009, 33(3): 480-501. 被引量:1
  • 9Phinyomark A, Phukpattaranont R Limsakul C. Feature reduc- tion and selection for EMG signal classification[J]. Expert Sys- tems with Applications, 2012, 39(8): 7420-7431. 被引量:1
  • 10Young A J, Smith L H, Rouse E J, et al. Classification of simul- taneous movements using surface EMG pattern recognition[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(5): 1250-1258. 被引量:1

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部