期刊文献+

求解VRPTW问题的不确定性目标偏好蚁群算法 被引量:3

Uncertain linguistic information objectives preference VRPTW of ant colony algorithm
下载PDF
导出
摘要 通过分析多目标的、有时间窗的车辆路径问题,对各个目标进行多属性不确定性语言评判,结合相关专家的综合意见以及决策者自身对专家意见的偏好,将决策者对目标属性的离散意见转换为对各目标的综合意见;通过定义一种综合排序指标来确定决策者对各目标的偏好权重,依据目标权重和各目标函数的规范化处理值,构建评价有时间窗的车辆路径问题的多目标偏好的综合适应度函数,将多目标问题转换为单目标问题,进而采用最大—最小蚂蚁系统算法对该问题进行求解;最后通过一个算例来说明该算法的有效性。 By analyzing the multi-objectives vehicle routing problem with time window, it uncertain evaluated multi-attributes of each objective, combined the comprehensive views of the relevant decision-makers, and transferred discrete levels of objective' s attributes to integrated levels. After that, it defined an integrated index to determine each objective sorting weight, and determined the multi-objective integrated fitness function of vehicle routing problem with time window base on objective' s weights and standardized objective function value, it transfered multi-objectives problem into single objective problem. Then it used max-min ant system algorithm to solve the problem. Finally, it used a case to illustrate the algorithm' s effectiveness.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期869-872,876,共5页 Application Research of Computers
基金 国家社科基金资助项目(11CJY067) 甘肃省自然科学基金资助项目(096RJZA088)
关键词 车辆路径问题 时间窗 目标偏好 不确定性语言信息 蚁群算法 最大—最小蚂蚁系统 vehicle routing problem(VRP) time window objectives preference uncertain linguistic information ant colony algorithm max-min ant system(MMAS)
  • 相关文献

参考文献13

二级参考文献38

  • 1吴国华,潘德惠.一种消费者品牌偏好的模糊排序方法[J].系统工程理论与实践,2004,24(9):28-32. 被引量:15
  • 2COELLO C C A, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279. 被引量:1
  • 3BERGH van den F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J].Information Sciences,2006,176(8):937-971. 被引量:1
  • 4BERGH van den F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):225-239. 被引量:1
  • 5NICKABADI A, EBADZADEH M M, SAFABAKHSH R. A dynamic niching particle swarm optimizer for multi-modal optimization[J].Proceeding of the IEEE CEC,2008,41(8):26-32. 被引量:1
  • 6SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior[C]//Proc of Congress on Evolutionary Computation. 2004: 325-331. 被引量:1
  • 7TSAI C F, TSAI C W, WU Han-chang, et al. ACODF: a novel data clustering approach for data mining in large databases[J].Journal of Systems and Software,2004,73(1):133-145. 被引量:1
  • 8TSOU D, MACNISH C. Adaptive particle swarm optimization for high-dimensional highly convex search spaces[C]//Proc of IEEE Congress on Evolutionary Computation. 2003:783-789. 被引量:1
  • 9UJJIN S, BENTLEY P J. Particle swarm optimization recommender system[C]//Proc of IEEE Swarm Intelligence Symposium.2003:124-131. 被引量:1
  • 10MA Yun-qian, CHERKASSKY V. Multiple model classification using SVM-based approach[C]//Proc of International Joint Conference on Neural Networks.2003:1581-1586. 被引量:1

共引文献202

同被引文献37

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部